Abstract 摘要 |
For a long period of time, the covariant density functional theory (CDFT) has been applied mostly to collective phenomena and only recently the interest has shifted to the description of the single-particle motion in nuclear systems. The successes and limitations of the description of single-particle degrees of freedom in spherical, deformed and rotating nuclei within the CDFT will be discussed. Further improvement of the description of the energies of predominantly single-particle states and their wave functions requires beyond mean field methods built on CDFT which include particle-vibration coupling. The impact of particle-vibration coupling on different physical observables such as the energies of predominantly single-particle states, the spin-orbit splittings, the energy splittings in pseudospin doublets will be illustrated in spherical nuclei ranging from light up to superheavy ones. |