- Talks
- Today's Events
- Conferences
Activities
Talks
Machine Learning Application in Supersymmetry
10/31
2017
- Title Machine Learning Application in Supersymmetry
- Speaker
- Date
- Venue
Abstract
CAS Key Laboratory of Theoretical Physics | |
Institute of Theoretical Physics | |
Chinese Academy of Sciences | |
Lunch Seminar | |
Title 题目 |
Machine Learning Application in Supersymmetry |
Speaker 报告人 |
杨金民 |
Affiliation 所在单位 |
ITP |
Date 日期 |
2017年10月31日(周 二)中午12:00 |
Venue 地点 |
Conference Hall 322, ITP/理论物理所322报告厅
|
Abstract 摘要 |
Will talk about a Machine Learning approach for a fast and reliable exploration of high dimensional parameter space by using machine learning models to evaluate the quality of random parameter sets. As a proof-of-concept, this approach is applied to several benchmark models including a supersymmetry scenario. The finding is that such an approach can significantly reduce the computational cost and ensure the discovery of all survived regions. |
Contact Person 所内联系人 |
杨刚 |