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We define a new geometry obtained from the all-loop amplituhedron in N ¼ 4 SYM by reducing its
four-dimensional external and loop momenta to three dimensions. Focusing on the simplest four-point
case, we provide strong evidence that the canonical form of this “reduced amplituhedron” gives the all-loop
integrand of the Aharony-Bergman-Jafferis-Maldacena four-point amplitude. In addition to various all-loop
cuts manifested by the geometry, we present explicitly new results for the integrand up to five loops, which
are much simpler than results in N ¼ 4 SYM. One of the reasons for such all-loop simplifications is that
only a very small fraction of the so-called negative geometries survives the dimensional reduction, which
corresponds to bipartite graphs. Our results suggest an unexpected relation between four-point amplitudes
in these two theories.
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Introduction.—The amplituhedron in planar N ¼ 4
SYM [1–3] is arguably one of the most surprising math-
ematical structures of scattering amplitudes we have seen,
where basic principles like locality and unitarity seem to
have originated from the underlying geometric picture. All-
loop integrands and tree amplitudes are given by the
canonical form, which has logarithmic singularities only
on boundaries of the amplituhedron [4,5]. As a beautiful
mathematical object with remarkable physical properties,
the amplituhedron has been extensively studied both at tree
and loop level (cf. [2,6–14]), and in particular it can be used
to make all-loop predictions about cuts of the integrand
[15,16], which seem impossible otherwise. On the other
hand, even for the four-point (n ¼ 4) L-loop amplituhe-
dron, the geometry becomes more complicated as L
increases, and an explicit computation for L ≥ 4 becomes
rather difficult (though n ¼ 4 integrand has been known to
L ¼ 10 [17–20]). Moreover, despite various interesting
ideas extending geometries beyond planar N ¼ 4 SYM
[21–31], an example of an all-loop amplituhedron in any
other theory has yet to be found.
By dimensionally reducing external and loop (region)

momenta of the amplituhedron, we obtain a reduced

amplituhedron with rich structures, but the computation
of canonical forms becomes greatly simplified, at least for
the n ¼ 4 case, which is a 3L-dimensional geometry in
the space of L loop variables. Surprisingly, we find very
strong evidence that this simplified n ¼ 4 geometry may
be the long-sought-after all-loop amplituhedron for four-
point amplitudes in N ¼ 6 Aharony-Bergman-Jafferis-
Maldacena (ABJM) theory [32]. In spite of an extensive
literature on ABJM amplitudes at tree and one-loop level
(cf. [33–37]), much less is known about multiloop ABJM
integrands beyond L ¼ 2 [38,39] (the only data available is
a conjecture for n ¼ 4, L ¼ 3 in [40]); even at tree level, the
amplituhedron in momentum space has only been proposed
recently without obvious analog in momentum-twistor
space yet [41,42]. In this Letter, we will not only show
that the canonical forms of this n ¼ 4 reduced amplituhe-
dron manifest various highly nontrivial all-loop cuts of
ABJM amplitudes, but also push the frontier significantly
by presenting compact expressions for ABJM integrands
up to L ¼ 5.
In N ¼ 4 SYM, it is beneficial to decompose the n ¼ 4

amplituhedron into building blocks called negative geom-
etries [43], and at each loop, nontrivial negative geometries
combine to give the integrand for an infrared-finite observ-
able closely related to the logarithm of amplitudes (or
equivalently Wilson loops with a single insertion) [44–49].
The analogous decomposition of the reduced amplituhe-
dron reveals enormous simplifications from D ¼ 4 to
D ¼ 3: only a tiny fraction of negative geometries, namely
those corresponding to bipartite graphs, contribute to the
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integrand, with very simple pole structures. This lies at the
heart of all-loop simplifications when reducing the n ¼ 4
amplituhedron to D ¼ 3.
Dimensional reduction of the amplituhedron.—In this

section, we first give the definition of the reduced ampli-
tuhedron for n ¼ 4, and then we outline a huge reduction of
negative geometries in D ¼ 3 of the corresponding geo-
metries in D ¼ 4 [43].
Definition of reduced amplituhedron:Recall that the n-

point amplituhedron is defined in the space of nmomentum
twistors [50], ZI

a with a ¼ 1; 2;…; n for external kinemat-
ics, as well as L lines in the twistor space, ðABÞIJi with
i ¼ 1;…; L for loop momenta; here I; J ¼ 1;…; 4 are
SLð4Þ indices, and the simplest bosonic SLð4Þ invariant
is defined as habcdi≡ ϵIJKLZI

aZJ
bZ

K
c ZL

d (and similarly for
hðABÞiabi and hðABÞiðABÞji). In [51], external kinematics
in D ¼ 3 was defined by dimensionally reducing every
external line, ZaZaþ1; in a completely analogous manner,
here we also need to dimensionally reduce all loop
variables ðABÞi, both of which are achieved by the so-
called symplectic conditions on these lines:

ΩIJZI
aZJ

aþ1 ¼ ΩIJAI
iB

J
i ¼ 0; with Ω ¼

�
0 ϵ2×2

ϵ2×2 0

�

ð1Þ

for a ¼ 1; 2;…; n and i ¼ 1;…; L, where the totally
antisymmetric matrix is defined as ϵ2×2 ¼ ð 0

−1
1
0
Þ.

We can define the reduced amplituhedron for any n and
L by restricting the D ¼ 4 amplituhedron geometry on the
subspace given by (1), as long as it has a nonvanishing
support there. In this Letter, we focus on the special case
n ¼ 4, and it is clear that we have a 3L-dimensional
geometry defined in the projected ðABÞi¼1;…;L space. An
important subtlety is that h1234i < 0 for real Z’s satisfying
symplectic conditions, thus we need to flip the overall
sign for the definition of the D ¼ 4 amplituhedron [1]:
we require hAB12i; hAB23i; hAB34i; hAB14i < 0 and
hAB13i; hAB24i > 0, for any loop ðABÞ, as well as
hðABÞiðABÞji < 0, all on the support of (1).
A convenient parametrization is ðABÞi ¼ ðZ1 þ xiZ2 −

wiZ4; yiZ2 þ Z3 þ ziZ4Þ [2], and the symplectic condition
on ðABÞi becomes xizi þ yiwi − 1 ¼ 0; the n ¼ 4 geo-
metry is defined by (xi;j ≔ xi − xj, etc.)

∀ i∶ xi; yi; zi; wi > 0; xizi þ yiwi ¼ 1;

∀ i; j∶ xi;jzi;j þ yi;jwi;j < 0: ð2Þ

We denote this geometry as AL with the canonical form
ΩðALÞ ≔ ΩL, and our main claim is that ΩL gives the
L-loop planar integrand for four-point ABJM amplitudes
(after stripping off the overall tree amplitude).

Negative geometries and their dimension reduction:In
[43], a nice rewriting for the n ¼ 4 amplituhedron [2] was
proposed, where it is decomposed into a sum of negative
geometries given by “mutual negativity” conditions, which
trivially carries over to our AL in D ¼ 3; each negative
geometry is represented by a labeled graph with L nodes
and E edges (edge ðijÞ for hðABÞiðABÞji > 0 since we
reversed all signs, and no condition otherwise), with an
overall sign factor ð−ÞE. We sum over all graphs with L
nodes without 2-cycles,

AL ¼
X
g

ð−ÞEðgÞAðgÞ; ð3Þ

where AðgÞ is the (oriented) geometry for graph g. It
suffices to consider all connected graphs, whose (signed)
sum gives the geometry for the logarithm of amplitudes
[43]. Such a decomposition is useful since each Ag is
simpler, whose canonical form is easier to compute. The
form for L ¼ 2, 3 reads

ð4Þ

where the connected part, or log of the amplitude, is
denoted as Ω̃L, e.g., Ω̃2 ≔ Ω2 − 1

2
Ω2

1. Similarly, the con-
nected part of L ¼ 4 is given by the sum of graphs with six
topologies (and so on for higher L),

ð5Þ

What is new inD ¼ 3 is that most of these geometries do
not contribute at all: we find that remarkably, under
dimensional reduction only those negative geometries with
bipartite graphs survive in the decomposition. For example,
for Ω̃3, the chain graph contributes but the triangle does not;
while for Ω̃4, only the two kinds of tree graphs and the box
contribute. This represents a major simplification as the
fraction of bipartite graphs in all graphs tend to zero quickly
as L increases: for L ¼ 2;…; 7, the number of topologies
for connected graphs are 1,2,6,21,112,853, but that of
bipartite topologies decrease to 1,1,3,5,17,44, e.g., for Ω̃5,
only five topologies (out of 21) survive the reduction.
Moreover, it turns out that one can compute the canonical
form for geometries of bipartite graphs with relative ease,
mainly due to their remarkably simple pole structures. The
reduction and the computation of their forms will be
explained in detail in [52].
ABJM integrands from reduced amplituhedron.—Let us

take a first look at L ¼ 1, where the geometry is defined as
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x, y, z, w > 0 and xzþ yw ¼ 1. In this special case, its
canonical form is nothing but reducing the D ¼ 4 form,
ðdx=xÞðdy=yÞðdz=zÞðdw=wÞ, onto the D ¼ 3 subspace:

Ω1 ¼
dx
x
dy
y
dz
z
dw
w

δðxzþ yw − 1Þ; ð6Þ

and we can rewrite it in a covariant form

Ω1 ¼
d3ABh1234i3=2ðhAB13ihAB24iÞ1=2
hAB12ihAB23ihAB34ihAB14i ; ð7Þ

where the measure is

d3AB ≔ hABd2AihABd2BiδðΩIJAIBJÞ: ð8Þ

Here, the numerator, ðhAB13ihAB24iÞ1=2∝ ðxzþywÞ1=2¼
1, turns out to be proportional to the famous ϵ numerator of
the dual conformal invariant box in D ¼ 3 [38]. Thus, the
dimensional reduction of the one-loop box in N ¼ 4 SYM
gives the one-loop box with the ϵ numerator in ABJM,
which confirms our claim at one loop.
All-loop soft and vanishing cuts.—Now we provide

strong evidence that ΩL gives and L-loop integrand for
L > 1. Let us first rewrite the inequalities (2) by solving for
variables xi ¼ ð1 − yiwiÞ=zi, and we arrive at the following
equivalent definition

wi; yi; zi > 0; wiyi < 1;

di;j ≔ ðwizj − wjziÞðyizj − yjziÞ − z2i;j < 0; ð9Þ

for i; j ¼ 1;…; L. Before proceeding to explicit computa-
tions, we see that (9) allows us to study some all-loop
cuts in a simple way. An important cut of four-point
ABJM amplitudes is the so-called soft cut, where we take
hAB12i ¼ hAB23i ¼ hAB34i ¼ 0, or equivalently y ¼ z ¼
w ¼ 0 for any given loop, and the result is the (L − 1)-loop
integrand. From geometry, with yi ¼ zi ¼ wi ¼ 0 clearly
di;j < 0 is trivially satisfied for any j ≠ i, thus the geometry

reduces to the (L − 1)-loop one: ∂
ð3Þ
yi¼zi¼wi¼0AL ¼ AL−1.

The soft cut is satisfied.
Moreover, certain cuts are known to vanish due to the

presence of vanishing odd-point amplitudes: by cutting
hðABÞi12i ¼ hðABÞiðABÞji ¼ hðABÞj12i ¼ 0 (or chang-
ing the last one to hðABÞj34i), we isolate a three-point
(or five-point, respectively) amplitude, which must vanish.
These are equivalent to setting wi ¼ di;j ¼ wj ¼ 0 or
wi ¼ di;j ¼ yj ¼ 0; in either case, di;j ¼ −z2i;j < 0 is trivi-
ally satisfied on the support of the other two conditions, and
the residue vanishes as expected. These and other vanishing
cuts are nicely guaranteed by the geometry. We have
checked our new results for L ¼ 4, 5 thoroughly: in
addition to various all-loop checks, we have computed
unitarity cuts and checked thatΩ4 andΩ5 satisfy the optical

theorem: double cuts are given by products of various
lower-loop integrands.
Explicit results up to five loops:We present explicitly the

canonical form up to five loops and leave the detailed
derivation in Supplemental Material [52]. To save space,
we introduce a shorthand notation ðABÞi ≔ li, and it turns
out that the logarithm Ω̃2 is simply

Ω̃2 ¼ −2
d3l1d3l2h1234i2

hl112ihl134ihl1l2ihl223ihl214i
þ ðl1 ↔ l2Þ:

ð10Þ
This is nothing but a double-triangle integrand where
external region momenta correspond to (12),(34) for l1,
and (23),(14) for l2, and vice versa. One can easily check
that by adding back one-loop squared, we recover the well-
known two-loop result [38,39].
One interesting feature of Ω̃2 is that for each term, l1

contains only two poles, hl112ihl134i or hl123ihl114i
(similarly for l2). We denote these combinations and
mutual conditions, which include all possible poles, as

si≔ hli12ihli34i; ti≔ hli23ihli14i; Di;j≔−hlilji:
We denote the ϵ numerator and l-independent factor as

ϵi ≔ ðhli13ihli24ih1234iÞ1=2; c ≔ h1234i;
and also the integrand with measure

Q
L
i¼1 d

3li stripped off
as Ω̃L. For L ¼ 1, 2, they read

ð11Þ

where the L ¼ 2 case is represented by “chain” graphs with
s, t pole structures represented by black and white coloring,
respectively.
Now we are ready to move to L ¼ 3. Remarkably we

find that Ω̃3 only receives contributions with pole structures
of three chains (each with two possible choices of s and t),
as represented by six bipartite graphs. It reads

ð12Þ

where for each chain we have two terms with s, t swapped,
and similar to L ¼ 1 the ϵ numerator makes correct weight:
Ω̃L has degree (−3) in each li. Each term is again a ladder
integral with two triangles and a middle box (with ϵ
numerator). Very nontrivially, when converting back to
Ω3, it agrees with the conjecture from generalized unitarity
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[40]; various independent checks are presented in
Supplemental Material [52].
After having familiarized ourselves with the notation, we

present the L ¼ 4 result in a very compact form, and it turns
out Ω̃4 only gets contributions from three topologies. We
give all bipartite graphs in Fig. 1. The first type consists of
12 × 2 bipartite chain graphs

C¼ 8c2
ϵ2ϵ3

D1;2D2;3D3;4s1t2s3t4
þðs↔ tÞþ11 perms; ð13Þ

then we have 4 × 2 “star” bipartite graphs

S ¼ 8c3
t1

D1;2D1;3D1;4s1t2t3t4
þ ðs ↔ tÞ þ 3 perms; ð14Þ

finally, we have three box bipartite graphs:

B ¼ 4
4ϵ1ϵ2ϵ3ϵ4 − cðϵ1ϵ3Nt

24 þ ϵ2ϵ4Ns
13Þ − c2Ncyc

1;2;3;4

D1;2D2;3D3;4D4;1s1t2s3t4

þ ðs ↔ tÞ þ 2 perms; ð15Þ
where we define combinations similar to s, t for two l s,

Ns
13≔ hl112ihl334iþhl312ihl134i;

Nt
24≔ hl214ihl423iþhl414ihl223i;

Ncyc
i;j;k;l ≔ hli12ihlj34ihlk12ihll34iþ cycð1;2;3;4Þ; ð16Þ

where cyc(1,2,3,4) indicates cyclic rotations of dual points
12 → 23 → 34 → 14; (s ↔ t) denotes the symmetrization
in the pairs (12,34) and (23,14).
The final result for L ¼ 4 reads

Ω̃4 ¼ −C − Sþ B; ð17Þ
where the signs are given by ð−ÞE with E the number of
edges. We compute these forms using a method whose
details are given in SupplementalMaterial [52]: after writing
down denominators according to bipartite graphs, we use an

ansatz for each numerator which consists of all possible
terms consistent with symmetries, and fix all parameters
(with numerous cross checks) from various boundaries
whose canonical forms can be computed directly.
Finally, we compute the five-loop form Ω̃5, which

consists of five topologies: three tree graphs with four
edges, a box with an external line (five edges), and one with
two nodes connected to three nodes (six edges). We have

ð18Þ

where only graphs without labels or color are shown, and
Tm denotes the total contribution from graphs with m
edges. The contribution of all trees, T4, takes similar forms
as lower trees (e.g., C, S for L ¼ 4). We follow the same
method for computing the remaining contributions: 60 × 2
bipartite graphs for T5 and 10 × 2 for T6, which are
analogous to B (especially T5 takes a very similar form).
The upshot is that the full five-loop result boils down to just
these two new functions (T5 and T6) given as follows:

ð19Þ

FIG. 1. All bipartite graphs contributing to Ω̃4.
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where in T6, we have polynomials Pa; Pb;…; Pe with certain weights in l1;…;l5, and here we record their expressions:

Pa ≔ −20s1s5 þ 16t1t5 þ ðNs
15Þ2; Pb ≔ 6s5Ns

14; Pc ≔ Ns
15N

t
34 − 4Ncyc

1;3;5;4; ð20Þ

Pd ≔ −s5½Ns
12N

t
34 þ cycðl2;l3;l4Þ� þ ½2hl512i2hl112ihl234ihl334ihl434i þ cycð1; 2; 3; 4Þ�

þ 2t5fhl114i½hl214ihl323ihl423i þ cycðl2;l3;l4Þ� þ ð14 ↔ 23Þg; ð21Þ

Pe ≔ 2s1s5ðNt
34 − Ns

34Þ − 4t1t5Nt
34 − fs5½hl112i2hl334ihl434i þ ð12 ↔ 34Þ� þ ðl1 ↔ l5Þg

þ Ns
15½hl114ihl514ihl323ihl423i þ ð14 ↔ 23Þ�: ð22Þ

Conclusions and outlook.—In this Letter, we have
discovered a surprising connection between four-point
amplitudes in N ¼ 4 SYM and ABJM: by dimensionally
reducing from D ¼ 4 to D ¼ 3, the amplituhedron of the
former becomes that of the latter, which we have checked
explicitly to five loops and for various all-loop cuts. The
reduced geometries exhibit remarkable structures and
simplicity.
One pressing question is the physical meaning of

reduced amplituhedra for higher points: does it correspond
to ABJM amplitudes or certain null polygonal Wilson
loops [39,54]? On the other hand, our n ¼ 4 integrand
clearly contains higher-point ones via unitarity, e.g., their
single cuts give a forward limit of six-point amplitudes
[55,56] (see Ref. [57] for L ¼ 2). It would be fascinating to
compute such higher-point forms at L ≥ 3 and reveal
possible geometries [58].
Last but not least, integrating the forms produces an

interesting, finite observable in ABJM theory (analogous to
that in N ¼ 4 SYM [43]). It is straightforward to do so for
L ≤ 3, and we expect to extract that cusp anomalous
dimension of ABJM from it; we also expect that resum-
mation for (some of) bipartite geometries would allow us to
study their contributions nonperturbatively. We will report
these results elsewhere [59].
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