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Global Symmetry
• Global symmetries are powerful in constraining correlation 

functions and other physical observables in quantum field 
theory (QFT).
• Ward identity, representations, selection rules…

• `t Hooft anomaly is an obstruction for gauging a global 
symmetry. It constrains the dynamics and phases of QFT.      
[‘t Hooft anomaly is not bad but physical->ABJ]
• ’t Hooft anomaly matching, RG flows, boundaries and interfaces…

• Symmetry transformations on operators can be
implemented by topological operators→												topological
defects

𝑈𝑔 𝑀



Topological Defects 
• Ward identity

• Continuous U(1) symmetry →
• topological property follows from the current conservation

• In general (continuous or discrete), a (0-form) global symmetry 
𝑔 ∈	𝐺 is associated to a codimension-1 topological defect L𝑔.
• Symmetry transformation on local operators can be implemented by 

topological defect surrounding. In 2d, L𝑔 is a line.

𝑈𝑔 𝑀 =	𝑒𝑖𝜃Q

6 David Simmons-Du�n

ally provide a fully nonperturbative formulation of quantum field theory,
removing the need for a Lagrangian. We are not there yet, but you can
help!

2. QFT Basics

The first step of the conformal bootstrap is to determine the full conse-
quences of symmetries. In this section, we quickly review symmetries in
quantum field theory, phrasing the discussion in language that will be use-
ful later. We work in Euclidean signature throughout.

2.1. The Stress Tensor

A local quantum field theory has a conserved stress tensor,

@µTµ⌫(x) = 0 (operator equation). (5)

This holds as an “operator equation,” meaning it is true away from other
operator insertions. In the presence of other operators, (5) gets modified
to include contact terms on the right-hand side,

@µhTµ⌫(x)O1(x1) . . . On(xn)i = �
X

i

�(x � xi)@
⌫

i
hO1(x1) . . . On(xn)i.

(6)

Exercise 2.1. Consider a QFT coupled to a background metric g. For
concreteness, suppose correlators are given by the path integral

hO1(x1) . . . On(xn)ig =

Z
D� O1(x1) . . . On(xn) e�S[g,�]. (7)

A stress tensor insertion is the response to a small metric perturbation,e

hTµ⌫(x)O1(x1) . . . On(xn)ig =
2

p
g

�

�gµ⌫(x)
hO1(x1) . . . On(xn)ig. (8)

Derive (6) by demanding that S[g, �] be di↵eomorphism invariant near flat
space. Find how to modify (6) when the Oi have spin.

eThis definition of the stress tensor works in a continuum field theory. If the UV is a
lattice model, we must assume (or prove) that a stress tensor emerges in the IR.
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Consider the integral of Tµ⌫ over a closed surface ⌃,f g

P ⌫(⌃) ⌘ �
Z

⌃
dSµTµ⌫(x). (9)

The Ward identity (6) implies that a correlator of P ⌫(⌃) with other oper-
ators is unchanged as we move ⌃, as long as ⌃ doesn’t cross any operator
insertions (figure 2). We say that P ⌫(⌃) is a “topological surface operator.”

Fig. 2. A surface ⌃ supporting the operator P
µ(⌃) can be freely deformed ⌃ ! ⌃0

without changing the correlation function, as long as it doesn’t cross any operator inser-
tions.

Let ⌃ = @B be the boundary of a ball B containing x and no other
insertions. Integrating (6) over B gives

hPµ(⌃)O(x) . . .i = @µhO(x) . . .i. (10)

In other words, surrounding O(x) with the topological surface operator Pµ

is equivalent to taking a derivative (figure 3).

Fig. 3. Surrounding O(x) with P
µ gives a derivative.

fThe word “surface” usually refers to a 2-manifold, but we will abuse terminology and
use it to refer to a codimension-1 manifold.
gOur definition of P

⌫ di↵ers from the usual one by a factor of i. This convention is
much nicer for Euclidean field theories, but it has the e↵ect of modifying some familiar
formulae, and also changing the properties of symmetry generators under Hermitian
conjugation. More on this in section 7.1.
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2D Ising Model (c=1/2)

• 3 primary operators in the Ising model and there is a Z2
global symmetry.

𝟏(𝟎,𝟎) 𝜺(𝟏,𝟏)Primary: 𝝈 𝟏 , 𝟏
𝟏𝟔 𝟏𝟔

Z2	Line:

𝟐 𝟐

↓
𝑳𝜺



• Z2	symmetry transformation is implemented by 𝑳𝜺 .

Lϵ

1 = 1

Lϵ

ϵ = ϵ

Lϵ

σ = ( - 1) σ



Symmetry Lines and Partition Function

• Symmetry lines act as symmetry 
transformation of local operator.

• The fusion of symmetry lines follows 
the group multiplication rules.

• The (inserted) torus partition function 
is

ℋ

Lh

t

Lh’

In this section, we propose a criteria to detect ’t Hooft anomalies of zero-form internal

symmetries by doing modular S-transformation of the twisted partition function with topo-

logical defect lines inserted along both spatial and time directions. This was motivated by

imaging that there is an ordering of the insertions of defect lines into the untwisted torus

partition functions. We illustrate our proposal in details as follows.

For simplicity we consider an Abelian global symmetry G. We consider the CFT on

a torus with modulus ⌧ and couple the theory to external background gauge fields. The

consequence is that we have twisted boundary conditions representing the group G. For

convenience let us denote the boundary conditions by (ht, hx) where they correspond to set

the twisted boundary conditions h 2 G in imaginary time direction and spatial direction

respectively. With the convention that left subscript twisting the time and right subscript

twisting the space, we have the twisted partition function denoted by Z(h,h)(⌧). In the

language of topological defect lines, the torus partition functions with defect lines along

the time direction or spatial direction are given by

Z(h,1)(⌧) = TrH[ĥq
L0�c/24q̄L̄0�c/24] , Z(1,h)(⌧) = TrHh [q

L0�c/24q̄L̄0�c/24] , (2.1) Zh1

where q = exp(2⇡i⌧) and q̄ = exp(�2⇡i⌧̄). They are related by modular S-transformation

SZ(h,1)(⌧) = Z(1,h)(⌧) . (2.2) Z1h

Under T transformations,

TnZ(1,h)(⌧) = Z(hn,h)(⌧) . (2.3) Zhnh

For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[13, 15].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[15].

– 4 –



Symmetry Lines and Partition Function

• Symmetry lines twist the boundary 
condition in quantization, therefore 
modified the Hilbert space.

• This twisting is related to 
automorphism of operator algebra

• The (twisted’) torus partition function is

ℋh

Lh
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[13, 15].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
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2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[15].

– 4 –
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coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[16, 18].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[18].
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• Solving crossing phases (F-symbol) of TDLs [Chang-Lin-
Shao-Yin, Bhardwaj-Tachikawa]

• F-symbol anomaly of G are classified/constrained by the 
pentagon identity →	group cohomology H3(G,U(1))
[Dijkgraaf-Witten,Chen-Gu-Liu-Wen]

• Our	main	result	is	that:	[K.Kikuchi-YZ]
A	new	mixed	anomaly=noncommutativity	of	symmetry	
line	insertions	on	torus

How to detect ‘t Hooft anomaly for a 
global symmetry G in 2d CFT?

can be generally decomposed into a direct sum of simple lines, via

Li . Lj =
M

k

Nk

ij
Lk, (4.1)

where Nk

ij
are non-negative integers and represent the multiplicity of Lk in the direct sum-

mand.

Figure 7: A 3-way junction amounts to a topological operator, represented by a vector in

VLiLjLk
.

The possibility of fusion also means that topological lines can form junctions (Figure

7). A junction of three (ordered) topological lines L1,L2,L3 is itself a (topological) defect

operator; such operators span a vector space VL1L2L3 , which is the subspace of weight (0, 0)

states in HL1.L2.L3 . For simple lines Li, dimVLiLjLk
is equal to the fusion coe�cients Nk

ij
,

where L
k
is the orientation reversal of Lk.4

i j k

l

i j k

l

Figure 8: The H-junction crossing move.

Given a pair of junctions operators in VLiLjLm and VLmLkL`
, we can form a 4-way “H-

junction” by connecting the Lm line with Lm. The H-junction operator can be expressed in

a cross-channel as a state in
L

n
VLjLkLn ⌦ VLiLnL`

(Figure 8). This defines a linear map

Ki`

jk
:

M

m

VLiLjLm ⌦ VLmLkL`
!

M

n

VLjLkLn ⌦ VLiLnL`
, (4.2)

which we refer to as the H-junction crossing kernel. The Ki`

jk
’s obey a set of consistency

relations that follow from a sequence of H-junction crossing moves on a 5-way junction,

known as the pentagon identity (Figure 9).

4
This intuitive statement can be proven using the pentagon identity by considering TDLs wrapping the

cylinder, see Appendix B of [12].

23

Figure 9: The sequence of two crossing moves on the left is equivalent to the sequence of

three crossing moves on the top/right.

A basic class of topological defect lines are “symmetry lines” or “invertible lines”, which

are associated with symmetries of the CFT. Let G be the symmetry group, it is expected

that every element g 2 G comes with a simple topological line Lg, such that the fusion is

governed by group product, namely Lg1 . Lg2 = Lg1g2 . This is a special case of (4.1) where

only one of the fusion coe�cients is nonzero (and is equal to 1). The junction operator space

VLg1Lg2Lg3
is isomorphic to C when g1g2g3 = 1, and trivial otherwise. We can pick a basis

vector vg1,g2 2 VLg1Lg2L(g1g2)
�1 for each junction, and express the crossing kernel (4.2) as

Kg1,(g1g2g3)
�1

g2,g3
(vg1,g2 ⌦ vg1g2,g3) = ei✓(g1,g2,g3)(vg2,g3 ⌦ vg1,g2g3). (4.3)

The pentagon identity implies the following relation of the crossing phase ✓,

✓(g1, g2, g3g4) + ✓(g1g2, g3, g4) = ✓(g2, g3, g4) + ✓(g1, g2g3, g4) + ✓(g1, g2, g3). (4.4)

On the other hand, if we rotate the phase of the basis vector vg1,g2 by ei'(g1,g2), ✓ changes by

�✓(g1, g2, g3) = '(g2, g3) + '(g1, g2g3)� '(g1g2, g3)� '(g1, g2). (4.5)

The set of possible crossing phases ✓ that obey the consistency condition (4.4) modulo the

ambiguity (4.5) defines the group cohomology H3(G,U(1)). If the G-symmetry lines in a

CFT have crossing phases that represents a nontrivial class in H3(G,U(1)), we say that the

symmetry is subject to ’t Hooft anomaly.

4.2 TDLs in the Ising CFT

The Ising CFT admits a Z2 symmetry b⌘ that flips the sign of the spin field � while leaving

the energy operator " invariant. We will denote the associated symmetry line ⌘. It follows

24



Consistency Conditions I

• Untwisted partition function is modular S and T invariant.

• If 2 circles on torus inserted by the same line, it is 
expected to be modular S-invariant

• In general, when 2 circles inserted by two different 
lines, we should have 

In this section, we propose a criteria to detect ’t Hooft anomalies of zero-form internal
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L0�c/24q̄L̄0�c/24] , (2.1) Zh1

where q = exp(2⇡i⌧) and q̄ = exp(�2⇡i⌧̄). They are related by modular S-transformation
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For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[13, 15].

We are motivated by another consistent condition
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We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.
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In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[15].
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In this paper we focus on zero-form global symmetry G and the associated ’t Hooft

anomalies in 2d conformal field theories (CFTs). The codimension-one topological defects in

2d are topological defect lines. In radial quantization of a 2d CFT onto a cylinder S1 ⇥ R,
the G transformation on the states in Hilbert space H can be implemented by inserting a

topological defect line associated to h 2 G along S1 at a fixed time. When the G line is

inserted along R, this e↵ectively twists the boundary condition along S1 (or adds chemical

potentials) and therefore modifies the original Hilbert space to the so-called defect Hilbert

space Hh. In both insertions, the fusion of topological defect lines obey group multiplication

rules. Placing the theory on a two-torus, these correspond to insert topological defect G lines

along two di↵erent cycles of the torus, which gives us the twisted torus partition function

Z(h,h0). Notice that the background gauge field in this case is one-form, inserting G lines

corresponding to h and h0 along two circles is equivalent to turning on background gauge

fields along two cycles, with holonomy h, h0 2 G.

Due to the fundamental role of modular constraints on 2d CFT, one expects that modular

transformations may also be important in detecting the ’t Hooft anomalies. In this paper we

propose that the modular S-transformation acted on the twisted partition function can be

used to detect ’t Hooft anomaly of G. Since the modular S-transformation exchanges two

nontrivial cycles, it is classically expected that

SZ(h,h0) = Z(h0,h).

If this equality is satisfied, there is no ’t Hooft anomaly. If not, we claim there is an ’t

Hooft anomaly. (For the case of G = Z2, this criteria was recently used in
LS

[? ]. When

G = Z2, our results agree with theirs.) Using the twisted partition function we also study

the relation between ’t Hooft anomaly free condition and the orbifolding condition. The

obstruction for orbifolding was recently interpreted as the mixed anomaly between G and

large di↵eomorphisms
NY,CFT

[13, 15]. We explicitly show the di↵erence between ’t Hooft anomaly

and obstruction of orbifolding by focusing on Wess-Zumino-Witten (WZW) models.

Yet another approach to detect ’t Hooft anomaly is by looking at the boundary conformal

field theories. In the anomaly inflow mechanism, intuitively, the anomalous boundary theory

cannot enjoy a boundary because @2 = 0. Consequences of this observation were studied,

say, in
JSY

[10] by high energy physicists and in
HTHR

[? ] by condensed matter physicists. A theory

is called edgeable if there is no obstruction to assign a boundary state to the theory on a

manifold with a boundary while maintaining the symmetry. Thus the above statements can

be written in short

Hd+1-anomalous ) unedgeable,

or equivalently

edgeable ) Hd+1-anomaly free. (1.1) edgecohomology’

A related study in d = 2 was done recently in
Y19

[12], where it was conjectured that if a G-

invariant boundary state exists, then G does not have H3(G,U(1))-’t Hooft anomalies nor

mixed anomalies with other internal symmetries. In this paper we will clarify the relation

– 2 –





Ising Model (c=1/2)

and

(A!̂0, Aµ̂) =
3

2
µ0 +

7X

j=1

µj(!̂6, A!̂j).

So we have

(A!̂0, Aµ̂) =
3

2
k � (A!̂0, µ̂),

implying

SZ(h,h)(⌧) = (�)3kZ(h,h)(⌧), (2.32)

and the partition function is invariant under the modular S-transformation i↵ k 2 2Z.

2.3 Minimal models

Our consideration so far was restricted to WZW models, which are special class of diagonal

RCFTs. A explicit family of TDLs in diagonal RCFTs are called Verlinde lines [23]. Due to

the modular invariance, there is a one-to-one correspondence between Verlinde lines and chiral

vertex algebra primaries [36–38]. The TDLs associated to global symmetry are called invert-

ible lines. One can repeat our previous computation using these invertible lines, namely twist

the torus partition function by invertible lines and consider their modular S-transformations

to detect ’t Hooft anomalies. It is therefore natural to expect that our criterion works for

general diagonal RCFTs. In this section, we test our proposal by studying some minimal

models.

2.3.1 Critical Ising model, i.e., M(4, 3)

The first canonical example is the critical Ising model. It has three primary operators id, ",

and �. The theory has Z2 symmetry, generated by the topological line associated to ". The

twisted partition function is given by

Z(h,1)(⌧) = |�id(⌧)|2 + |�"(⌧)|2 � |��(⌧)|2

because just � is odd under the Z2. Performing the modular S-transformation, one obtains

Z(1,h)(⌧) = �̄id(⌧)�"(⌧) + �̄"(⌧)�id(⌧) + |��(⌧)|2.

A quicker way to compute the twisted partition function Z(1,h) is to use the fusion coe�cients

Nki
j (or equivalently fusion rules). The partition function can be written as a trace over the

twisted Hilbert space HL which is defined by inserting the corresponding topological line L
along the time direction:

Z(1,h)(⌧) = trHL

⇣
qL0�c/24q̄L̄0�c/24

⌘

where L0 and L̄0 are the usual Virasoro generators, and q := e2⇡i⌧ . Then the partition

function can be calculated with ease because it is given by

Z(1,hk)(⌧) =
X

i,j

Nki
j�i(⌧)�̄j(⌧̄)
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where hk is the group element generated by the topological line Lk associated to the primary

operator �k. Then using the fusion rules

"⇥ " = id, "⇥ id = ", "⇥ � = �,

one can easily reproduce the twisted partition function Z(1,h) above. We will use this quicker

way below.

Finally, by performing the modular T -transformation once, we get

Z(h,h)(⌧) = ��̄id(⌧̄)�"(⌧)� �̄"(⌧̄)�id(⌧) + �̄�(⌧̄)��(⌧). (2.33)

The reduced modular S-matrix method [17] claims the Z2 is free of ’t Hooft anomaly. So one

would expect the twisted partition function is invariant under the modular S-transformation,

and indeed one can show

SZ(h,h)(⌧) = Z(h,h)(⌧). (2.34)

2.3.2 Tricritical Ising model, i.e., M(5, 4)

In the same way, one can study the tricritical Ising model. The theory has six primary

operators id,�0,�, "00, "0, and ". This theory also has a Z2 symmetry which is generated by

the topological line associated to "00. Using the fusion rules involving "00, the twisted partition

function can be calculated easily:

Z(1,h)(⌧) = |��0(⌧)|2 + |��(⌧)|2 + �̄id(⌧̄)�"00(⌧) + �̄"00(⌧̄)�id(⌧) + �̄"0(⌧̄)�"(⌧) + �̄"(⌧̄)�"0(⌧).

Then performing the modular T -transformation once, one obtains

Z(h,h)(⌧) = |��0(⌧)|2 + |��(⌧)|2 � �̄id(⌧̄)�"00(⌧)� �̄"00(⌧̄)�id(⌧)� �̄"0(⌧̄)�"(⌧)� �̄"(⌧̄)�"0(⌧).

(2.35)

The twisted partition function is invariant under the modular S-transformation

SZ(h,h)(⌧) = Z(h,h)(⌧) (2.36)

consistent with the reduced modular S-matrix method.

2.3.3 Tetracritical Ising model, i.e., M(6, 5)

This model has 10 primary operators {1, u, f, v, w, ŵ, v̂, f̂ , û, 1̂} following the convention of

[39]. Among these, w with

w ⇥ w = 1

corresponds to an invertible Verlinde line C, which generates the Z2 of the model. To explore

whether the Z2 has ’t Hooft anomaly, we consider partition functions twisted by C. The first

twisted partition function Z(1,h) is given by

Z(1,h)(⌧) = �̄1�w + �̄w�1 + �̄u�v + �̄v�u + |�f |2 + �̄ŵ�1̂ + �̄1̂�ŵ + �̄v̂�û + �̄û�v̂ + |�
f̂
|2.
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[39]. Among these, w with

w ⇥ w = 1

corresponds to an invertible Verlinde line C, which generates the Z2 of the model. To explore

whether the Z2 has ’t Hooft anomaly, we consider partition functions twisted by C. The first

twisted partition function Z(1,h) is given by

Z(1,h)(⌧) = �̄1�w + �̄w�1 + �̄u�v + �̄v�u + |�f |2 + �̄ŵ�1̂ + �̄1̂�ŵ + �̄v̂�û + �̄û�v̂ + |�
f̂
|2.

– 20 –

[Lin-Shao, Kikuchi-YZ]

and

(A!̂0, Aµ̂) =
3

2
µ0 +

7X

j=1

µj(!̂6, A!̂j).

So we have

(A!̂0, Aµ̂) =
3

2
k � (A!̂0, µ̂),

implying

SZ(h,h)(⌧) = (�)3kZ(h,h)(⌧), (2.31)

and the partition function is invariant under the modular S-transformation i↵ k 2 2Z.

2.3 Minimal models

Our consideration so far was restricted to WZW models, which are special class of diagonal

RCFTs. A explicit family of TDLs in diagonal RCFTs are called Verlinde lines [23]. Due to

the modular invariance, there is a one-to-one correspondence between Verlinde lines and chiral

vertex algebra primaries [36–38]. The TDLs associated to global symmetry are called invert-

ible lines. One can repeat our previous computation using these invertible lines, namely twist

the torus partition function by invertible lines and consider their modular S-transformations

to detect our anomalies. It is therefore natural to expect that our criterion works for general

diagonal RCFTs. In this section, we test our proposal by studying some minimal models.
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SU(2)_k Wess-Zumino-Witten (WZW)

Using this, one can compute SZ(h,h)

SZ(h,h)(⌧) = S
X

j=0,1/2,...,k/2

(�i)k(�)2j�j(⌧)�̄ k
2�j

(⌧̄)

=
X

j,j1,j2

(�i)k(�)2jSjj1S k
2�j,j2

�j1(⌧)�̄j2(⌧̄)

=
X

j,j1,j2

(�i)k(�)2jSjj1(�)2j2Sjj2�j1(⌧)�̄j2(⌧)

=
X

j,j1,j2

(�i)k(�)2j2Sjj1Sj,
k
2�j2

�j1(⌧)�̄j2(⌧̄)

=
X

j1,j2

(�i)k(�)2j2�
j1,

k
2�j2

�j1(⌧)�̄j2(⌧)

=
X

j

(�i)k(�)2(
k
2�j)�j(⌧)�̄ k

2�j
(⌧)

= (�)kZ(h,h)(⌧),

where we used (2.14) twice. Thus Z(h,h) is invariant under the modular S-transformation i↵

k 2 2Z, while the partition function flips sign i↵ k 2 2Z+ 1. In fact this approach to detect

Z2 ’t Hooft anomaly by computing Z(h,h)(⌧) and its S-transformation can be used for many

other theories with a global Z2 and we believe it is a general criterion.

When we move to discrete global symmetry larger than Z2, in general one cannot get the

mismatch of twisted partition functions as an overall phase, rather it appears as a unitary

phase matrix. To illustrate this fact, let us study the SU(3)k WZW model which has a Z3

global symmetry.

2.1.2 SU(3)k WZW

In this case, the outer automorphism group is Z3 which is isomorphic to the center of SU(3).

To study the anomaly, we consider partition functions twisted by this Z3. Let us first consider

the case k = 1. The relevant twisted partition function is given by

Z(h,h)(⌧) = !2�̄3(⌧̄)�1(⌧) + �̄3̄(⌧̄)�3(⌧) + !�̄1(⌧̄)�3̄(⌧), (2.15)

where (1 = [1; 0, 0], 3 = [0; 1, 0], 3̄ = [0; 0, 1]) are three primaries and ! = e2⇡i/3. One can

rewrite (2.15) in a matrix form by choosing a basis {1, 3, 3̄}. Therefore Z(h,h)(⌧) can be

represented as a (special unitary) matrix

Z(h,h)  !

0

B@
0 !2 0

0 0 1

! 0 0

1

CA =: U ,

where the rows and columns label � and �̄, respectively. Performing the modular S-transformation

on the twisted partition function, one obtains

SZ(h,h)(⌧) = !2�̄1(⌧̄)�3̄(⌧) + !�̄3(⌧̄)�1(⌧) + �̄3̄(⌧̄)�3(⌧),
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In the matrix form, we can represent this as (SAS†)
µ̂,�̂

=
P

�̂,⇢̂
S
�̂,�̂

A�̂,⇢̂(S†)⇢̂,µ̂ 7. Here we

introduce modular S matrix S
µ̂,�̂

by S�
�̂
=

P
µ̂
�µ̂Sµ̂,�̂

.

We employ the same strategy as SU(2) case; we assume the modular invariance and see if

any contradiction appears. Then the twisted sector partition function (before the projection

onto gauge invariant states) is given by the outer automorphism of ĝ:

Z(1,h) = SZ(h,1) =
X

µ̂2Pk
+

�̄Aµ̂�µ̂, (2.16)

where we use Eqs. (2.14) and (2.15). Another formula we need is the modular T transfor-

mation of A where T
µ̂,�̂

= e2⇡i(�µ̂� c
24 )�

µ̂,�̂
. This is given by [28]

(T †AT )
µ̂,�̂

= �
µ̂,A�̂

e�⇡ik|A!̂0|2�2⇡i(A!̂0,�). (2.17)

Using these relations, the partition function Z(hl,h) is given by

Z(hl,h) = T lSZ(h,1) =
X

µ̂2Pk
+

e�⇡ikl|A!̂0|2�2⇡il(A!̂0,�)�̄Aµ̂�µ̂. (2.18)

The phase e�2⇡i(A!̂0,�) is exactly the same as that in (2.13). Therefore, this phase means the

action of the center � and satisfies e�2⇡iN(A!̂0,�) = 1 where N is the order of �. Then, by

substituting l = N in (2.18) we obtain

Z(hN ,h) = e�⇡ikN |A!̂0|2Z(1,h). (2.19)

Thus if the phase e�⇡ikN |A!̂0|2 6= 1, we have contradiction and mixed global anomalies arise.

We list the values of e�⇡iN |A!̂0|2 in table 1 for arbitrary compact, simple, connected and

simply connected Lie groups whose center groups are non-trivial cyclic groups. According to

this list, center symmetries of SU(2r), USp(2r + 1), Spin(4r + 2) and E7 can be anomalous.

In these cases, only for even k the center symmetries are not anomalous. By the ’t Hooft

anomaly matching condition, a theory with even k and a theory with odd k are not connected

by RG flows while preserving the center symmetry.

When there are no mixed gauge gravitational anomalies, we can construct the orbifold

partition function by

Zorb =
X

µ̂,�̂2Pk
+

�̄µ̂Mµ̂,�̂
�
�̂
, (2.20)

where the matrix element M
µ̂�̂

is given by

M
µ̂�̂

=
1

N

N�1X

p,q=0

�
µ̂,Ap�̂

e�2⇡iq(A!̂0,�)e�⇡ipqk|A!̂0|2 . (2.21)

This partition function is, of course, not invariant under the modular transformation or

gauge transformation when there are mixed gauge gravitational anomalies.

7
This notation is di↵erent from [28].
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Figure 1. Anomaly detecting and modular transformation. The green line and red line are h and
h0 respectively.

or equivalently

edgeable ) Hd+1-anomaly free. (1.3)

Recently it was conjectured in [22] that if a G-invariant boundary state exists, then G does not

have H3(G,U(1))-’t Hooft anomalies nor mixed anomalies with other internal symmetries.

In this paper we support this conjecture by providing further evidences.

As a byproduct, we clarify the relations among G-invariant boundary state condition,

H3(G,U(1)) ’t Hoot anomaly-free condition and G-orbifolding condition, as explained in the

diagram in Fig.2.

This paper is structured as follows. In Section 2, we propose a criterion to detect ’t Hooft

anomalies of zero-form internal discrete symmetries in two-dimensional RCFTs. We test our

proposal against WZW models and some minimal models. We also explain the relations

between ’t Hooft anomaly-free conditions and orbifolding conditions. We find the former is

stronger than the latter in WZW models. In Section 3, we move to the boundaries. We clarify

the relations between conditions which guarantee the existence of invariant boundary states

and ’t Hooft anomaly-free conditions. Our results show that when there exists an H-invariant

boundary state, H cannot have ’t Hooft anomalies of itself nor mixed anomalies. Finally, we

summarize our results and discuss future directions in Section 4. There are 3 appendices. We

review the generalized orbifolding procedure in Appendix A. In Appendix B, we complete

the proof of a claim that an existence of H-invariant boundary state is equivalent to H is

“anomaly-decoupled.” In Appendix C, we complete the discussion of [20] to include the D2l

– 4 –

Two different lines inserted



SU(N)_k WZW

partition functions (in general non-diagonal) by modifying the original orbifolding proce-

dure [35]. 7 In fact, one can construct well-defined (orbifold) partition functions out of SU(3)1
WZW model with its Z3 center, which has ’t Hooft anomaly as we have just seen. One can

construct infinitely many “counterexamples” of this sort, SU(2l+1)2m+1 with l,m 2 N. Thus
what obstructs orbifolding is a mixed anomaly between the modular symmetry SL(2,Z) and
the global internal symmetry G with which one is trying to take an orbifolding [20], and is

not an ’t Hooft anomaly of G. In other words, ’t Hooft anomaly-free conditions are stronger

than orbifolding conditions.

There is an intuitive way to understand this fact. On a torus, there are two modular

transformations, S-transformation and T -transformation. As we have seen, the consistency

condition originating from the modular S-transformations are sensitive to ’t Hooft anomalies,

and the consistency condition originating from the modular T -transformations is sensitive

to the mixed anomaly between global symmetry (used to twist) and large di↵eomorphisms

[20, 35].

We illustrate the following statement by focusing on diagonal RCFTs,

’t Hooft anomaly free ⇢ orbifoldable. (2.18)

2.2 General WZWs

In general Gk WZW models, primaries are labeled by a�ne weights µ̂. When one puts the

model on T2 with modulus ⌧ , the twisted partition function Z(h,h)(⌧) is given by [20, 35]

Z(h,h)(⌧) =
X

µ̂2P
k
+

e�⇡ik|A!̂0|
2
�2⇡i(A!̂0,µ̂)�̄Aµ̂(⌧̄)�µ̂(⌧), (2.19)

where A is the outer automorphism action corresponding to the element h of the center of G

as mentioned before. Now the modular S-matrix elements satisfy

Sµ̂,A⌫̂ = e�2⇡i(A!̂0,µ̂)Sµ̂,⌫̂ . (2.20)

Using this, one can compute SZ(h,h);

SZ(h,h)(⌧) = S
X

µ̂2P
k
+

e�⇡ik|A!̂0|
2
�2⇡i(A!̂0,µ̂)�̄Aµ̂(⌧̄)�µ̂(⌧)

=
X

µ̂,⌫̂1,⌫̂22P
k
+

e�⇡ik|A!̂0|
2
�2⇡i(A!̂0,µ̂)S⇤

⌫̂1,Aµ̂
�̄⌫̂1(⌧̄)S⌫̂2,µ̂�⌫̂2(⌧)

=
X

µ̂,⌫̂1,⌫̂22P
k
+

e�⇡ik|A!̂0|
2+2⇡i(A!̂0,⌫̂1)S⇤

⌫̂1,µ̂
�̄⌫̂1(⌧̄)SA⌫̂2,µ̂�⌫̂2(⌧)

=
X

µ̂2P
k
+

e�⇡ik|A!̂0|
2+2⇡i(A!̂0,Aµ̂)�̄Aµ̂(⌧̄)�µ̂(⌧).

(2.21)

7This will be discussed in further details in [44].
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4

Consistency Conditions I: continued

•When the order of discrete Abelian G is	higher	than	
Z2, we have to truncate the S-transformed twisted 
partition function to that including primaries 
operators corresponding to symmetry lines (Verlinde
lines).

•We interpret the violation of consistency condition I as a 
signal of a mixed anomaly for RCFT

• This anomaly agrees precisely with 3d 1-form anomaly 
[Hung-Wu-Zhou]



Remarks:

• In diagonal RCFTs, primaries are 1-1 corresponding to 
Verlinde lines, among which there are symmetry lines 
we concern. [Verlinde, Petkova-Zuber, Moore-Seiberg]

• Our ‘t Hooft anomaly is a mixed anomaly between 
global symmetry G and the outer automorphism 
symmetry. Which is different from F-symbol ‘t Hooft
anomaly.





Tests:

• Ising CFT: (Kramers-Wannier duality=anomaly free)

• SU(3)_1: 

• SU(3)_2: 

• SU(3)_3:

3.2 SU(3)1 cases

First, we consider the SU(3)1 WZW model, whose center Z3 is non-anomalous. The modular

S matrix for SU(3)1 is given by

S =
1p
3

0

@
1 1 1

1  2

1 2 

1

A ,  = e
2⇡i
3 . (3.6)

The diagonal partition function is given by

Zdiag = |�1|2 + |�3|2 + |�3̄|2. (3.7)

Here we used the representations of SU(3) as labels of primary fields. Because Z3 is non-

anomalous, we can take the orbifold of this diagonal models by the center symmetry Z3, and

we obtain the following partition function:

Zorb = |�1|2 + �3�̄3̄ + �3̄�̄3. (3.8)

The orbifold action exchanges the 3 and 3̄.
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other groups.
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which has von Neumann entropy

�tr (⇢ ln ⇢) = ln 3,

indicating that the Z3 has an anomaly beyond WZW models.

eZZ3 = |�C11 |2 + |�C21 |2 + �̄
C

(1)
13

�
C

(2)
13

+ �̄
C

(2)
13

�
C

(1)
13

+ �̄
C

(1)
23

�
C

(2)
23

+ �̄
C

(2)
23

�
C

(1)
23

. (2.41)

2.4 Interpretation of our anomaly

So far, we have just stated that our criterion (1.1) detects some anomaly without interpreting

what this anomaly is. We propose the anomaly is a mixed anomaly12 between the internal

discrete symmetry and its “S-dual.” For WZW theories, the former is nothing but the center,

and the latter is the outer automorphism. In the case of minimal models, only the former

is familiar, but we can find the analogy of “outer automorphism”. Let us start from WZW

models. We consider SU(3)k WZW models. Orbifold partition functions of the SU(3)1 WZW

model twisted by Z3 is given by

eZZ3 = |�1|2 + �̄3̄�3 + �̄3�3̄. (2.42)

One can see this is not invariant under cyclic permutations 1 ! 3 ! 3̄ ! 1, the outer

automorphisms. Since it is believed that orbifolding and gauging are the same, the theory

(2.42) is obtained by gauging the Z3 center. Gauging one symmetry and another is broken

signals a mixed anomaly between the two. So this example is consistent with our proposal.

Next, let us study the SU(3)2 WZW model. The orbifold partition function is given by

eZZ3 = |�[2;0,0]|2+�̄[1;0,1]�[1;1,0]+�̄[1;1,0]�[1;0,1]+�̄[0;0,2]�[0;2,0]+|�[0;1,1]|2+�̄[0;2,0]�[0;0,2]. (2.43)

Again the outer automorphism is broken, consistent with our interpretation. Finally, let us

examine the SU(3)3 WZW model. The orbifold partition function is computed as

eZZ3 = |�[3;0,0] + �[0;3,0] + �[0;0,3]|2 + 3|�[1;1,1]|2. (2.44)

In this case, one can see the outer automorphism is preserved, supporting our claim.

What about minimal models? Although the “S-duals” of discrete internal global sym-

metries in these models are not known to our best knowledge, we can find them. In WZW

models, one can read outer automorphisms from the fusion rules among the primaries. Follow-

ing the same step, we can find “S-duals” of the symmetries in minimal models. For example,

the critical Ising model has Z2 generated by L". Looking at the fusion rules involving ",

we observe it e↵ectively exchanges id and ". This is the automorphism we are interested.

Since we have seen the model is free of our anomaly, the orbifold partition function should

be invariant under the exchange. In deed, one can see

eZZ2 = |�id|2 + |�"|2 + |��|2 = Z(1,1) (2.45)

12We thank Yuji Tachikawa for pointing our erroneous interpretation in v1.
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Consistency Conditions II

•We have used modular S-transformation, but not yet T.

• If 2 circles on torus inserted by a generating line of Zn, it 
is expected, after n times of T-twist [CFT yellow book]

• In general, when 2 circles inserted by different lines,  

In this section, we propose a criteria to detect ’t Hooft anomalies of zero-form internal

symmetries by doing modular S-transformation of the twisted partition function with topo-

logical defect lines inserted along both spatial and time directions. This was motivated by

imaging that there is an ordering of the insertions of defect lines into the untwisted torus

partition functions. We illustrate our proposal in details as follows.

For simplicity we consider an Abelian global symmetry G. We consider the CFT on

a torus with modulus ⌧ and couple the theory to external background gauge fields. The

consequence is that we have twisted boundary conditions representing the group G. For

convenience let us denote the boundary conditions by (ht, hx) where they correspond to set

the twisted boundary conditions h 2 G in imaginary time direction and spatial direction

respectively. With the convention that left subscript twisting the time and right subscript

twisting the space, we have the twisted partition function denoted by Z(h,h)(⌧). In the

language of topological defect lines, the torus partition functions with defect lines along

the time direction or spatial direction are given by

Z(h,1)(⌧) = TrH[ĥq
L0�c/24q̄L̄0�c/24] , Z(1,h)(⌧) = TrHh [q

L0�c/24q̄L̄0�c/24] , (2.1) Zh1

where q = exp(2⇡i⌧) and q̄ = exp(�2⇡i⌧̄). They are related by modular S-transformation

SZ(h,1)(⌧) = Z(1,h)(⌧) . (2.2) Z1h

Under T transformations,

TnZ(1,h)(⌧) = Z(hn,h)(⌧) . (2.3) Zhnh

For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[13, 15].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[15].
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symmetries by doing modular S-transformation of the twisted partition function with topo-
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NY,CFT

[16, 18].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of
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2.5) is the correct criteria to detect the ’t Hooft anomaly
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2.1 Examples
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els
CFT

[18].
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Consistency Conditions II
• The violation of this condition is interpreted as a mixed anomaly 

between G and diffeomorphism [Numasawa-Yamaguchi]

• This consistency was considered as (generalized) orbifolding 
conditions when G=ZN in early days [CFT yellow book]

• We generalize this consistency condition to arbitrary abelian 
discrete symmetry G=	ZM*ZN…, and find consistency condition 
I is sufficient but not necessary condition for II.



WZW Models (Condition I, ‘t Hooft anomaly)

3.6 E7

In this case, we have

A[µ0;µ1, µ2, µ3, µ4, µ5, µ6, µ7] = [µ6;µ5, µ4, µ3, µ2, µ1, µ0, µ7].

Aµ̂ = µ̂ imposes

µ0 = µ6&µ1 = µ5&µ2 = µ4&µ3, µ7 are free.

Thus the level is given by

k ⌘ µ0+2µ1+3µ2+4µ3+3µ4+2µ5+µ6+2µ7 = 2 (µ0 + 2µ1 + 3µ2 + 2µ3 + µ7) 2 2Z, (3.8) E7k

reproducing the anomaly-free condition k 2 2Z.
We summarize our results in a table below.

type center � Smatrix SZ(h,h0)

��� = Z(h0,h)

��� |Aµ̂ic = |µ̂ic
Ar Zr+1 k 2 (r + 1)Z k 2 (r + 1)Z k 2 (r + 1)Z
Br Z2 k 2 Z k 2 Z k 2 Z
Cr Z2 rk 2 2Z rk 2 2Z rk 2 2Z
D2l Z2 ⇥ Z2 k 2 2Z k 2 2Z k 2 2Z
D2l+1 Z4 k 2 4Z k 2 4Z k 2 4Z
E6 Z3 k 2 3Z k 2 3Z k 2 3Z
E7 Z2 k 2 2Z k 2 2Z k 2 2Z

Table 1. Anomaly-free conditions summary

Note that all results are consistent with the cohomological classification (see e.g.
CGLW

[11])

H3(ZN , U(1)) = ZN , H3(Z2 ⇥ Z2, U(1)) = Z2 ⇥ Z2 ⇥ Z2.

We would like to make a few comments. One may think the result rk 2 2Z of Cr type does

not fit the cohomological classification, but since a given theory with a fixed rank and level,

the anomaly is either “on” or “o↵.” So the result does fit the classification. Secondly, one

would notice the “mismatch” in D2l type. Although we believe our criteria

SZ(h,h0)

��� = Z(h0,h)

���

also works when h and h0 are di↵erent, unfortunately we do not know how to compute Z(h,h0).

That is why our results in the column is restricted to the case h = h0. However, as we saw in

many examples,

SZ(h,h)

��� = Z(h,h)

���

correctly detect the braiding of h with itself. So what is missing is only the braiding of h

with eh. As we show below, an existence of an invariant boundary state rules out anomalies

– 24 –

[Kikuchi-YZ]



Cartan matrix Group G center � |A!̂0|2 e�⇡iN |A!̂0|2 Anomaly Free

An�1 SU(n) Zn |!1|2 = n�1
n

(�1)n�1 n 2 2Z+ 1 or k 2 2Z
Bn Spin(2n+ 1) Z2 |!1|2 = 1 1 k 2 Z
Cn USp(n) Z2 |!n|2 = n

2 (�1)n n 2 2Z or k 2 2Z
D2l+1 Spin(4l + 2) Z4 |!1|2 = 2l+1

2 �1 k 2 2Z
E6 E6 Z3 |!5|2 = 4

3 1 k 2 Z
E7 E7 Z2 |!6|2 = 3

2 �1 k 2 2Z

Table 1: Lie groups G denote the simply connected counterparts of given type Lie algebras.

N is the order of their center symmetry, which are cyclic groups. There are possibilities of

global anomalies only when the phase e�⇡iN |A!̂0|2 is not equal to one.

2.4 Anomalies of subgroups

We can also consider anomalies for subgroups of the center. Let us consider the subgroup

ZM ⇢ ZN where M satisfies Ms = N for an integer s. Then the generator of ZM is given

by h0 = hs i.e. ZM = {1, hs, · · · , hs(M�1)}. Under the assumption of modular invariance, the

twisted sector partition function Z(1,h0) = SZ(h0,1) is

Z(1,h0) =
X

µ̂2Pk
+

�̄Asµ̂�µ̂, (2.22)

and the sector (h0l, h0) partition function Z(h0l,h0) = T lSZ(h0,1) is

Z(h0l,h0) =
X

µ̂2Pk
+

e�⇡ikl|As
!̂0|2e�2⇡ils2(A!̂0,µ)�̄Asµ̂�µ̂. (2.23)

Similarly, the matrix element of orbifold M
µ̂�̂

is given by

M
µ̂�̂

=
1

M

M�1X

p,q=0

�
µ̂,Aps�̂

e�2⇡iqs2(A!̂0,�)e�⇡ipqk|As
!̂0|2 . (2.24)

Anomalies are detected by the following phase factor:

Z(h0M ,h0) = e�⇡iMk|As
!̂0|2Z(1,h0). (2.25)

As an example, we consider the SU(6) k = 1 WZW model and the subgroup Z2 of the center

Z6. In this case, |A3!̂0|2 = |!3|2 = 3
2 and e�⇡i2|As

!̂0|2 = �1. Therefore, this subgroup Z2 is

still anomalous.

Another example is the SU(8) k = 1 WZW model, where the center Z8 is anomalous.

Let us consider the subgroup Z2 of the center Z8. In this case, |A4!̂0|2 = |!4|2 = 2 and

e�⇡i2|As
!̂0|2 = 1. Therefore, Z2 = {1, h4} is a non-anomalous subgroup of anomalous Z8.

Actually, the orbifold theory gives the E7 k = 1 WZW model:

Zorb = |�1 + �70|2 + |�28 + �2̄8|2, (2.26)
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WZW(Condition II, orbifolding)

[Numasawa-Yamaguchi]

In this section, we propose a criteria to detect ’t Hooft anomalies of zero-form internal

symmetries by doing modular S-transformation of the twisted partition function with topo-

logical defect lines inserted along both spatial and time directions. This was motivated by

imaging that there is an ordering of the insertions of defect lines into the untwisted torus

partition functions. We illustrate our proposal in details as follows.

For simplicity we consider an Abelian global symmetry G. We consider the CFT on

a torus with modulus ⌧ and couple the theory to external background gauge fields. The

consequence is that we have twisted boundary conditions representing the group G. For

convenience let us denote the boundary conditions by (ht, hx) where they correspond to set

the twisted boundary conditions h 2 G in imaginary time direction and spatial direction

respectively. With the convention that left subscript twisting the time and right subscript

twisting the space, we have the twisted partition function denoted by Z(h,h)(⌧). In the

language of topological defect lines, the torus partition functions with defect lines along

the time direction or spatial direction are given by

Z(h,1)(⌧) = TrH[ĥq
L0�c/24q̄L̄0�c/24] , Z(1,h)(⌧) = TrHh [q

L0�c/24q̄L̄0�c/24] , (2.1) Zh1

where q = exp(2⇡i⌧) and q̄ = exp(�2⇡i⌧̄). They are related by modular S-transformation

SZ(h,1)(⌧) = Z(1,h)(⌧) . (2.2) Z1h

Under T transformations,

TnZ(1,h)(⌧) = Z(hn,h)(⌧) . (2.3) Zhnh

For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[13, 15].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[15].
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In this section, we propose a criteria to detect ’t Hooft anomalies of zero-form internal

symmetries by doing modular S-transformation of the twisted partition function with topo-

logical defect lines inserted along both spatial and time directions. This was motivated by

imaging that there is an ordering of the insertions of defect lines into the untwisted torus

partition functions. We illustrate our proposal in details as follows.

For simplicity we consider an Abelian global symmetry G. We consider the CFT on

a torus with modulus ⌧ and couple the theory to external background gauge fields. The

consequence is that we have twisted boundary conditions representing the group G. For

convenience let us denote the boundary conditions by (ht, hx) where they correspond to set

the twisted boundary conditions h 2 G in imaginary time direction and spatial direction

respectively. With the convention that left subscript twisting the time and right subscript

twisting the space, we have the twisted partition function denoted by Z(h,h)(⌧). In the
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Under T transformations,

TnZ(1,h)(⌧) = Z(hn,h)(⌧) . (2.3) Zhnh

For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[13, 15].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[15].
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In this section, we propose a criteria to detect ’t Hooft anomalies of zero-form internal

symmetries by doing modular S-transformation of the twisted partition function with topo-

logical defect lines inserted along both spatial and time directions. This was motivated by

imaging that there is an ordering of the insertions of defect lines into the untwisted torus

partition functions. We illustrate our proposal in details as follows.

For simplicity we consider an Abelian global symmetry G. We consider the CFT on

a torus with modulus ⌧ and couple the theory to external background gauge fields. The

consequence is that we have twisted boundary conditions representing the group G. For

convenience let us denote the boundary conditions by (ht, hx) where they correspond to set

the twisted boundary conditions h 2 G in imaginary time direction and spatial direction

respectively. With the convention that left subscript twisting the time and right subscript

twisting the space, we have the twisted partition function denoted by Z(h,h)(⌧). In the

language of topological defect lines, the torus partition functions with defect lines along
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L0�c/24q̄L̄0�c/24] , Z(1,h)(⌧) = TrHh [q
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TnZ(1,h)(⌧) = Z(hn,h0)(⌧) . (2.3) Zhnh

For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[16, 18].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[18].
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symmetries by doing modular S-transformation of the twisted partition function with topo-

logical defect lines inserted along both spatial and time directions. This was motivated by
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where q = exp(2⇡i⌧) and q̄ = exp(�2⇡i⌧̄). They are related by modular S-transformation

SZ(h,1)(⌧) = Z(1,h0)(⌧) . (2.2) Z1h

Under T transformations,

TnZ(1,h)(⌧) = Z(hn,h0)(⌧) . (2.3) Zhnh

For a cyclic symmetry G of order N , there is apparently a consistency condition

Z(hN ,h)(⌧) = Z(1,h)(⌧) , (2.4) ZhNh

coming from the group fusion of topological defect lines. The violation of this condition has

been recently interpreted as the mixed anomaly between G and large di↵eomorphisms
NY,CFT

[16, 18].

We are motivated by another consistent condition

SZ(h,h)(⌧) = Z(h,h)(⌧) . (2.5) SZ

We propose that violation of this condition will reflect the existence of ’t Hooft anomaly of

G. When G = Z2 we check that (
SZSZ

2.5) is the correct criteria to detect the ’t Hooft anomaly

by examining the known CFT examples. When G = ZN , h is the generator of ZN and we

have to understand the criteria (
SZSZ

2.5) in a truncated version since the spectrum of the twisted

partition function Z(h,h) in general is very rich. We test our proposal by examining many

examples as follows.

2.1 Examples

In this subsection, we explain our criteria to detect ’t Hooft anomalies of zero-form internal

symmetries in Wess-Zumino-Witten (WZW) models. We first briefly review WZW mod-

els
CFT

[18].
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[Kikuchi-YZ]



Boundary state
• Conformal invariance finds Ishibashi states, 

• Physical conditions find Cardy states, 

• For the center symmetry of WZW, it is isomorphic to 
``permutation’’ of primaries

• Symmetry invariant boundary state is given by

which has von Neumann entropy

�tr (⇢ ln ⇢) = ln 3,

indicating that the Z3 has an ’t Hooft anomaly beyond WZW models.

Let us come back to the relation between ’t Hooft anomaly-free condition and the orb-

ifoldability (2.18). A straightforward computation shows the orbifold partition function is

given by

eZZ3 = |�C11 |2 + |�C21 |2 + �̄
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C

(2)
23

�
C

(1)
23

, (2.42)

which is modular invariant. Therefore, this model provides another example of H-orbifoldable

theory even when H has a ’t Hooft anomaly. Thus we believe that (2.18) is true not just for

WZW models but also for more general RCFTs such as minimal models.

3 Invariant boundary states

As we have explained in the introduction, ’t Hooft anomalies and boundaries are closely

related. To make the relation more precise, we turn to the boundary states of CFTs in this

section. It is known that there is a physical basis called Cardy states [40]. As realized in

[20, 21], an existence of symmetry invariant Cardy states give anomaly-free conditions. Let

us first review how the Cardy states are defined.

As we reviewed in the beginning of the section 2.1, conformal families of WZW models

are labeled by a�ne weights µ̂ 2 P k
+. They provide primary states |µ̂, µ̂i. Linear combinations

of the primary states and their descendants define what is called Ishibashi states [41]

|µ̂ii.

The Cardy states are constructed out of the Ishibashi states as [40]

|µ̂ic :=
X

�̂2P
k
+

S
µ̂�̂p
S0̂�̂

|�̂ii. (3.1)

Under a center element h 2 B(G), it is mapped to

h : |µ̂ic 7! |Aµ̂ic,

where A is the corresponding element of the outer automorphism group. Therefore, if there

exists an invariant Cardy state, the a�ne Dynkin labels cannot be arbitrary, and the con-

straint can be translated to a condition on the level k. More concretely, if an a�ne weight µ̂

provides an invariant Cardy state under h, it must obey |Aµ̂ic = |µ̂ic, or equivalently

Aµ̂ = µ̂.
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3 Invariant boundary states

As we have explained in the introduction, ’t Hooft anomalies and boundaries are closely

related. To make the relation more precise, we turn to the boundary states of CFTs in this

section. It is known that there is a physical basis called Cardy states [40]. As realized in

[20, 21], an existence of symmetry invariant Cardy states give anomaly-free conditions. Let

us first review how the Cardy states are defined.

As we reviewed in the beginning of the section 2.1, conformal families of WZW models

are labeled by a�ne weights µ̂ 2 P k
+. They provide primary states |µ̂, µ̂i. Linear combinations

of the primary states and their descendants define what is called Ishibashi states [41]

|µ̂ii.

The Cardy states are constructed out of the Ishibashi states as [40]

|µ̂ic :=
X

�̂2P
k
+

S
µ̂�̂p
S0̂�̂

|�̂ii. (3.1)

Under a center element h 2 B(G), it is mapped to

h : |µ̂ic 7! |Aµ̂ic,
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∃ invariant boundary state=G is 
anomaly decoupled
• Invariant boundary state can be used to detect anomaly

• G is anomaly decoupled if G is anomaly (Type I consistency) free 
and also free of any mixing with other symmetries G’

• For the center symmetry of WZW, we demonstrate the 
equivalence : G-invariant boundary state = G anomaly 
decoupled.

• We conjecture this is true for any diagonal RCFT

[Han-Tiwari-Hsieh-Ryu]



∃ Invariant 
Boundary State

Anomaly free

Orbifolding Condition



Conclusion
•We find a general way to detect ‘t Hooft anomaly 

based on twisted torus partition function

• In particular a new anomaly between G and the outer 
automorphism->such theory can not be trivially 
gapped

• gapless approach to detect bulk topological phase

• Generalizations? (arbitrary CFT, non-abelian G, higher 
dimensions, higher form symmetry)
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Thank You!



∃ Invariant 
Boundary State

‘t Hooft Anomaly free

Orbifolding Condition


