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Investigation of black hole solutions in Einstein gravity extended
with higher-order curvature terms. We consider Einstein-Weyl
gravity, with L =

√
−g(R − 2Λ + 1

2αC
µνρσCµνρσ), in four dimen-

sions. As well as all Einstein metrics, there are further non-
Einstein solutions, which include additional black holes with AdS
or Lifshitz asymptotics.

Based on work with Hong Lü, Yi Pang and Justin Vazquez-Poritz.



AdS/CFT and Other Correspondences

• The AdS/CFT correspondence relates a bulk asymptotically
anti de Sitter (AdS) bulk theory with gravity in d + 1 di-
mensions to a conformal field theory on its d dimensional
Minkowski boundary at infinity.

ds2 =
dr2

r2
+ r2 ηµνdx

µdxν

Correlation functions in the strongly-coupled boundary theory
at r → ∞ are related to computations involving the classical
action in the bulk.

• Non-relativistic theories at strong coupling may be related
to analogous bulk backgrounds that are asymptotic to space-
times where d-dimensional Minkowski symmetry group is bro-
ken. Examples include asymptotically Lifshitz spacetimes

ds2 =
dr2

r2
+ r2 d~x2 − r2z dt2

with z 6= 1, and asymptotically Schrödinger spacetimes

ds2 =
dr2

r2
+ r2 (d~x2 − 2dvdt)− r2z dt2

These have applications in areas such as condensed matter
physics.



Four-Dimensional Higher-Derivative Gravity

• One situation where asymptotically Lifshitz and Schrödinger
spacetimes naturally arise is in higher-derivative gravity.

• Higher-derivative gravity may circumvent the non-renormalisability
problems of Einstein gravity. Stelle showed that four-dimensional
gravity extended with curvature-squared terms is perturba-
tively renormalisable. At the price, however, of ghosts:
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• In four dimensions, the Gauss-Bonnet combination is purely
topological (total derivative), so the most general possibility
with quadratic curvature is

I =
1

2κ2

∫ √
−g d4x(R− 2Λ + αRµνRµν + βR2)

• For generic α and β, describes a massless spin-2 field, a mas-
sive spin-2 field, and a massive scalar field. Around AdS4,
massless spin-2 and scalar have positive energy excitations,
but the massive spin-2 has negative energy (i.e. ghostlike).



Einstein-Weyl Gravity

• The massive spin-0 is absent if α = −3β. The action is just

I =
1

2κ2

∫ √
−g d4x

(
R− 2Λ + 1

2αC
µνρσCµνρσ

)
where Cµνρσ is the Weyl tensor.

• The equations of motion are Gµν − 4αEµν = 0, where

Gµν = Rµν − 1
2Rgµν + Λ gµν ,

Eµν = (∇ρ∇σ + 1
2R

ρσ)Cµρνσ

and Eµν is the Bach tensor.

• The Bach tensor vanishes if gµν is Einstein, so all solutions
of cosmological Einstein gravity remain solutions. We can
consider the AdS4 background, with

Rµνρσ =
Λ

3
(gµρgνσ − gµσgνρ) , Rµν = Λgµν

and then study linearised fluctuations around this. When
needed, we shall take the AdS4 metric to be

ds2 =
3

(−Λ)

[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

2

]



Linearisation Around AdS4

• The metric fluctuations δgµν = hµν around AdS4 then satisfy

[α� + 1− 4
3αΛ]GLµν − 2

3αΛRLgµν

−1
3α(−∇µ∇ν + gµν� + Λgµν)RL = 0

where the linearised Einstein and Ricci tensors are given by

GLµν = RLµν − 1
2R

L gµν − Λhµν ,

RLµν = ∇λ∇(µhν)λ −
1
2�hµν − 1

2∇µ∇νh ,
RL = ∇µ∇νhµν −�h− Λh .

• A convenient gauge choice here is ∇µhµν = ∇νh, where h =

gµνhµν. (Similar to de Donder gauge, except 1 rather than 1
2

factor on RHS.) The trace of the fluctuation equation then
gives

Λh = 0
This then means ∇µhµν = 0, so hµν is transverse, traceless.
Setting Λ = −3 (“unit AdS4”) for convenience, the modes
satisfy (

� + 2
)(

� + 4 +
1

α

)
hµν = 0



The Spin-2 Modes

• Generically, when the constant terms in the two factors are
unequal, the general solution of this fourth-order equation is a
linear combination of solutions of the two factorised equations

(� + 2)h(0)
µν = 0 and

(
� + 4 +

1

α

)
h

(M)
µν = 0

• h(0)
µν is an ordinary massless spin-2 field, and h

(M)
µν describes

massive spin-2, with M2 = −2− 1/α.

• Irreducible representations D(E0, s) of the AdS group SO(3,2)
are characterised by their lowest energy E0 and their spin s.
These are the eigenvalues of the representation under L04
and L12, where LAB are the SO(3,2) generators. Unitarity
requires E0 ≥ s+ 1, with masslessness in the case of equality.

• For spin-2, E0 is related to M by

E0 =
3

2
±
√

9

4
+M2

Thus unitary spin-2 requires the plus sign, and M2 ≥ 0.

• Can have non-tachyonic negative M2, provided −9
4 ≤M

2 < 0.



Energies of the spin-2 Modes

• The energies of the massless and massive spin-2 modes, cal-
culated from the Hamiltonian describing small fluctuations
around AdS4, are

E(0) = −
1

2κ2
(1 + 2α)

∫ √
−g d4x∇0h

µν
(0) ḣ

(0)
µν

E(M) =
1

2κ2
(1 + 2α)

∫ √
−g d4x∇0h

µν
(M) ḣ

(M)
µν

The integrals are negative, so we need

α ≥ −
1

2
in order to avoid negative energies for the massless spin-2
modes. The massive spin-2 then have negative energies.

• One way to avoid the massive spin-2 ghosts could be to elim-
inate these modes by imposing suitable boundary conditions
at infinity. The fall-off is of order e−E0 ρ, so lower E0 modes
fall off more slowly. In particular, the non-unitary modes with
E0 < 3 fall off more slowly than the massless modes.

• If we arrange for all the massive spin-2 to have E0 < 3, then
boundary conditions could eliminate the ghosts. (This is ef-
fectively done anyway for the minus-sign choice in E0.)



The Non-Tachyonic Window

• The massive modes are non-unitary and still non-tachyonic if
−9

4 ≤M
2 < 0. This translates into

α ≤ −
1

2
or α ≥ 4

• We need α ≥ −1/2 for the massless modes to be ghostfree,
so this leaves

α = −
1

2
or α ≥ 4

• The case α = −1/2 is Critical Gravity. Here the massless
modes have zero energy, and the massive modes become
massless , giving logarithmic modes (also non-unitary).

• α ≥ 4 gives a 1-parameter family of models where the mass-
less modes have positive energies, and the massive modes are
all non-unitary, E0 < 3, and can be eliminated by boundary
conditions at infinity.

• The limiting case α → ∞ is pure Weyl-squared conformally-
invariant gravity, as discussed recently by Maldacena.



Lifshitz and Schrödinger Vacua

• In addition to AdS, Einstein-Weyl gravity also admits Lifshitz
vacua,

ds2 = −r2z dt2 +
dr2

σr2
+ r2(dx2 + dy2)

with

z =
8α+ 1±

√
2(1 + 2α)(16α− 1)

4α− 1
, σ =

6

z2 + 2z + 3

z is real if α ≥ 1/16 or α ≤ −1/2.

• In conformal gravity (α −→ ∞), the Lifshitz scaling is z = 4
or z = 0. These solutions generalise in conformal gravity to
S2 or H2 spatial topologies.

• There exist also Schrödinger vacua in Einstein-Weyl gravity,

ds2 = −r2z dt2 +
dr2

r2
+ r2(−2dt dx+ dy2)

with

z =
1

4
±

1

4

√
1−

4

α



Solutions in Einstein-Weyl and Conformal Gravity

• Since the Bach tensor vanishes for Einstein metrics, all solu-
tions of cosmological Einstein gravity L =

√
−g(R − 2Λ) are

also solutions of Einstein-Weyl gravity (with the same Λ). In
particular, Schwarzschild-AdS and Kerr-AdS are solutions.

• Beyond the Einstein metrics, it is difficult to obtain general
classes of explicit solutions of the fourth-order equations of
Einstein-Weyl gravity, even if one assumes spherical symmetry
(à la Schwarzschild-AdS). More can be done explicitly in pure
conformal gravity:

• Since the equations of motion of conformal gravity are con-
formally invariant, any metric that is conformally Einstein
is a solution.

• In fact, solutions of conformal gravity that are not conformally
Einstein are quite hard to come by.

• A test for being conformally Einstein: If g̃µν = Ω2gµν and

R̃µν = 1
4R̃g̃µν, then Vµ ≡ ∂µ log Ω satisfies

∇µCµνρσ + V µCµνρσ = 0

So the existence of such a V µ is a necessary condition.



Non-conformally Einstein Solutions of Conformal Gravity

• As of 2000 (2008?), only one Lorentzian solution of con-
formal gravity that is not conformally Einstein was known
(Nurowski and Plebanski):

ds2 = dx2 + dy2 − 2
3(dx+ y3du)(ydr + 11

9 dx−
1
9y

3du)

(And any conformal scaling thereof.)

• In Euclidean signature, any metric with (anti) self-dual Weyl
tensor,

Cµνρσ = ±1
2εµν

αβ Cαβρσ

is a solution of conformal gravity. Non-conformally Einstein
examples are known.

• Among Bianchi IX metrics,

ds2 = dr2 + a2σ2
1 + b2σ2

2 + c2σ2
3

where a, b and c are functions of r and σi are left-invariant 1-
forms of SU(2), there exist triaxial solutions (a 6= b 6= c 6= a)
of conformal gravity that are not conformally Einstein. (All
biaxial solutions (a = b) are conformally Einstein.)



Spherically-Symmetric Black Holes in Conformal Gravity

• Using general coordinate invariance and conformal scaling,
the most general conformal class of “spherically symmetric”
metrics is

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

2,k ,

where

dΩ2
2,k =

dx2

1− kx2
+ (1− kx2)dy2

with k = 1, 0 or −1 (S2, T2 or H2). The metric solves the
conformal gravity equations if (Reigert,...)

f = br2 +
c2 − k2

3d
r + c+

d

r

where b, c and d are constants.

• If c2 = k2, the metric is Schwarzschild-AdS. When c2 6= k2,
there is an additional parameter, associated with a slower
fall-off (relative to the br2 cosmological term) than the usual
“mass term” d/r. This may be viewed as massive spin-2
“hair.”



Black Hole Thermodynamics in Conformal Gravity

• The general spherically symmetric solution in conformal grav-
ity is in fact a conformal scaling of Schwarzschild-AdS ds̃2,
namely ds2 = Ω−2 ds̃2 with

ds̃2 = −
(
k − 1

3Λρ2 −
2M

ρ

)
dt2 +

(
k − 1

3Λρ2 −
2M

ρ

)−1
dρ2 + ρ2dΩ2

2,k

with Ω = 1+qρ and r = ρΩ−1. The parameters in the general
conformal gravity solution are then given by

b = 2Mq3 + kq2 − 1
3Λ , c = k + 6Mq , d = −2M

Since the conformal factor is singular at ρ = ∞, the ther-
modynamic properties of the black hole in conformal gravity
differ from those of the Schwarzschild-AdS black hole.

• Calculation of the mass of the general black hole in confor-
mal gravity requires care. The presence of the slower fall-off
of the extra “massive spin-2” term in the metric function f
means that the usual methods for calculating the mass give
divergent results. (Deser-Tekin involves a background sub-
traction, which is often fraught with ambiguities. Even AMD
(electric component of Weyl tensor at infinity) diverges be-
cause of slower approach to AdS.)



• For any vector ξ, first variation of Lagrangian 4-form is given
by LξL = ELξφ + dΘ(φ,Lξφ), where φ represents the fields
(metric,...) and E the equations of motion. Then if ξ gen-
erates a symmetry, there is a conserved current J = Θ− iξL
with J = dQ on-shell. For conformal gravity,

Q =
α

4
εµνρσ (Cρσαβ∇αξβ − 2ξβ∇αCρσαβ)dxµ ∧ dxν

This gives a finite result for the mass E of the general con-
formal black hole, and it agrees with the standard formula
when c2 = k2.

• If we write the metric function as

f = −1
3Λr2 + Ξr + c+

d

r

where 3Ξd = c2 − k2, then the mass E satisfies the first-law
relation

dE = TdS + ΘdΛ + ΨdΞ

and the Smarr-type formula E = 2ΘΛ + ΨΞ, where

Ψ =
α(c− k)

24π
is the thermodynamic variable conjugate to the massive hair
parameter Ξ.



z = 4 Lifshitz Black Holes in Conformal Gravity

• These are given by

ds2 = −r8fdt2 +
4dr2

r2f
+ r2dΩ2

2.k , f = 1 +
c

r2
+
c2 − k2

3r4
+

d

r6

The metric is again conformal to Schwarzschild-AdS ds̃2 =
Ω2ds2 with Ω = q[r(c−k+3r2)]−1 and ρ = rΩ. The conformal
factor is singular at infinity, and so the asymptotic global
structure is very different from Schwarzschild-AdS.

• It is not obvious how to define, or calculate, the black hole
mass in this Lifshitz case. Not only the usual Deser-Tekin
and AMD methods, but also the conserved charge Q we used
earlier, give divergent answers. One possibility is to defined
the mass E by integrating the first law dE = TdS.

• For k = 0 solutions, there exists a conserved Noether charge
associated with a global scaling symmetry of the metrics
(analogous to one considered by Bertoldi, Burrington and
Peet for Lifshitz black holes in Einstein-Proca). This can be
used to give a definition of mass in these cases, which is in
agreement with the integration of the first law.

• There is also a z = 0 Lifshitz black hole, with ds2 = −fdt2 +
4dr2/(r2f) + r2dΩ2

2,k and f = 1 + c/r2 + (c2 − k2)/(3r4).



AdS and Lifshitz Black Holes in Einstein-Weyl Gravity

• We no longer have conformal symmetry, and the general
ansatz for spherically-symmetric solutions is

ds2 = −a(r)dt2 +
dr2

f(r)
+ r2dΩ2

2,k

The equations can be reduced to second-order equations for
a(r) and f(r), but these seem not to be solvable explicitly.

• We can use numerical methods to solve the equations. A
convenient way is to construct a series expansion near the
horizon at r = r0, and use this to set initial conditions just
outside the horizon.

a(r) = (r − r0) + a2(r − r0)2 + a3(r − r0)3 + · · ·
f(r) = f1(r − r0) + f2(r − r0)2 + f3(r − r0)3 + · · ·

an and fn for n ≥ 2 are solved for in terms of r0 and f1.

• Schwarzschild-AdS corresponds to f1 = 3r0 + k/r0. Defining

f1 = 3r0 +
k

r0
+ δ ,

then taking δ 6= 0 corresponds to turning on the massive
spin-2 “hair.”



• We find that if the Weyl-squared coefficient α lies in the
range where the massive spin-2 excitations around AdS have
m2 < 0, namely α < −1

2 or α > 0, then there exists a range of
δ around δ = 0 for which the equations of motion integrate
stably out to r =∞.

δ− ≤ δ ≤ δ+ .

• For δ inside this range, the solution approaches AdS as r →∞.

• For δ = δ− or δ = δ+, the solution instead approaches the
Lifshitz vacuum discussed previously, with z being the larger
root of

z =
8α+ 1±

√
2(1 + 2α)(16α− 1)

4α− 1

• If δ outside the range, the solution is singular at large r.

• Thus when α < −1
2 or α > 0, there exists a 1-parameter fam-

ily of more general asymptotically AdS spherically symmetric
black holes with massive spin-2 “hair.” There exist also two
discrete endpoints of the parameter range where the black
hole is asymptotically Lifshitz.

• If 0 < α < 4, the massive mode has m2 < −9/4, outside the
Breitenlöhner-Freedman bound. Then, the solutions will be
unstable to time-dependent runaway modes.



Conclusions

• Einstein-Weyl gravity with α < −1
2 or ≥ 4 provides a possi-

bly viable description of gravity in which the massive spin-2
modes, which have slower fall-off than the massless modes,
could be truncated by boundary conditions. (Similar to the
mechanism discussed by Maldacena for conformal gravity.)

• All solutions of Einstein gravity are also solutions of Einstein-
Weyl gravity. Finding the more general solutions of Einstein-
Weyl gravity explicitly is difficult, even for spherical symmetry.
Numerical analysis indicates further black holes exist, both
with AdS and Lifshitz asymptotics.

• The equations of motion of pure conformal gravity (α→∞)
are easier to solve. There are interesting open problems here,
such as finding classes of solutions that are not conformally
Einstein.

• The thermodynamics of the black holes in conformal and in
Einstein-Weyl gravity is not well understood. Can one give a
meaning to energy for asymptotically Lifshitz black holes?

• It would be interesting to study more complicated solutions,
such as rotating black holes.


