AdS and Lifshitz Black Holes in Conformal and Einstein-Weyl Gravities

KITPC, Beijing, 7th June 2012

Chris Pope

Investigation of black hole solutions in Einstein gravity extended with higher-order curvature terms. We consider Einstein-Weyl gravity, with $\mathcal{L} = \sqrt{-g}(R - 2\Lambda + \frac{1}{2}\alpha C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma})$, in four dimensions. As well as all Einstein metrics, there are further non-Einstein solutions, which include additional black holes with AdS or Lifshitz asymptotics.

Based on work with Hong Lü, Yi Pang and Justin Vazquez-Poritz.

AdS/CFT and Other Correspondences

• The AdS/CFT correspondence relates a bulk asymptotically anti de Sitter (AdS) bulk theory with gravity in d + 1 dimensions to a conformal field theory on its d dimensional Minkowski boundary at infinity.

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

Correlation functions in the strongly-coupled boundary theory at $r \to \infty$ are related to computations involving the classical action in the bulk.

• Non-relativistic theories at strong coupling may be related to analogous bulk backgrounds that are asymptotic to space-times where *d*-dimensional Minkowski symmetry group is broken. Examples include asymptotically Lifshitz spacetimes

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2} d\vec{x}^{2} - r^{2z} dt^{2}$$

with $z \neq 1$, and asymptotically Schrödinger spacetimes

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2} \left(d\vec{x}^{2} - 2dvdt \right) - r^{2z} dt^{2}$$

These have applications in areas such as condensed matter physics.

Four-Dimensional Higher-Derivative Gravity

- One situation where asymptotically Lifshitz and Schrödinger spacetimes naturally arise is in higher-derivative gravity.
- Higher-derivative gravity may circumvent the non-renormalisability problems of Einstein gravity. Stelle showed that four-dimensional gravity extended with curvature-squared terms is perturbatively renormalisable. At the price, however, of ghosts:

• In four dimensions, the Gauss-Bonnet combination is purely topological (total derivative), so the most general possibility with quadratic curvature is

$$I = \frac{1}{2\kappa^2} \int \sqrt{-g} \, d^4 x (R - 2\Lambda + \alpha R^{\mu\nu} R_{\mu\nu} + \beta R^2)$$

• For generic α and β , describes a massless spin-2 field, a massive spin-2 field, and a massive scalar field. Around AdS₄, massless spin-2 and scalar have positive energy excitations, but the massive spin-2 has negative energy (i.e. ghostlike).

Einstein-Weyl Gravity

• The massive spin-0 is absent if $\alpha = -3\beta$. The action is just

$$I = \frac{1}{2\kappa^2} \int \sqrt{-g} \, d^4x \left(R - 2\Lambda + \frac{1}{2} \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} \right)$$

where $C_{\mu\nu\rho\sigma}$ is the Weyl tensor.

• The equations of motion are $\mathcal{G}_{\mu\nu} - 4\alpha E_{\mu\nu} = 0$, where

$$\mathcal{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} + \Lambda g_{\mu\nu},$$

$$E_{\mu\nu} = (\nabla^{\rho}\nabla^{\sigma} + \frac{1}{2}R^{\rho\sigma})C_{\mu\rho\nu\sigma}$$

and $E_{\mu\nu}$ is the Bach tensor.

• The Bach tensor vanishes if $g_{\mu\nu}$ is Einstein, so all solutions of cosmological Einstein gravity remain solutions. We can consider the AdS₄ background, with

$$R_{\mu\nu\rho\sigma} = \frac{\Lambda}{3} (g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}), \qquad R_{\mu\nu} = \Lambda g_{\mu\nu}$$

and then study linearised fluctuations around this. When needed, we shall take the AdS_4 metric to be

$$ds^{2} = \frac{3}{(-\Lambda)} \left[-\cosh^{2}\rho \, dt^{2} + d\rho^{2} + \sinh^{2}\rho \, d\Omega_{2}^{2} \right]$$

Linearisation Around AdS₄

• The metric fluctuations $\delta g_{\mu\nu} = h_{\mu\nu}$ around AdS₄ then satisfy

$$[\alpha \Box + 1 - \frac{4}{3}\alpha \Lambda]\mathcal{G}_{\mu\nu}^{L} - \frac{2}{3}\alpha \Lambda R^{L}g_{\mu\nu}$$
$$-\frac{1}{3}\alpha (-\nabla_{\mu}\nabla_{\nu} + g_{\mu\nu}\Box + \Lambda g_{\mu\nu})R^{L} = 0$$

where the linearised Einstein and Ricci tensors are given by

$$\begin{aligned} \mathcal{G}_{\mu\nu}^{L} &= R_{\mu\nu}^{L} - \frac{1}{2} R^{L} g_{\mu\nu} - \Lambda h_{\mu\nu} ,\\ R_{\mu\nu}^{L} &= \nabla^{\lambda} \nabla_{(\mu} h_{\nu) \lambda} - \frac{1}{2} \Box h_{\mu\nu} - \frac{1}{2} \nabla_{\mu} \nabla_{\nu} h ,\\ R^{L} &= \nabla^{\mu} \nabla^{\nu} h_{\mu\nu} - \Box h - \Lambda h . \end{aligned}$$

• A convenient gauge choice here is $\nabla^{\mu}h_{\mu\nu} = \nabla_{\nu}h$, where $h = g^{\mu\nu}h_{\mu\nu}$. (Similar to de Donder gauge, except 1 rather than $\frac{1}{2}$ factor on RHS.) The trace of the fluctuation equation then gives

$\Lambda h = 0$

This then means $\nabla^{\mu}h_{\mu\nu} = 0$, so $h_{\mu\nu}$ is transverse, traceless. Setting $\Lambda = -3$ ("unit AdS₄") for convenience, the modes satisfy

$$\left(\Box+2\right)\left(\Box+4+\frac{1}{\alpha}\right)h_{\mu\nu}=0$$

The Spin-2 Modes

• Generically, when the constant terms in the two factors are unequal, the general solution of this fourth-order equation is a linear combination of solutions of the two factorised equations

$$(\Box + 2)h_{\mu\nu}^{(0)} = 0$$
 and $\left(\Box + 4 + \frac{1}{\alpha}\right)h_{\mu\nu}^{(M)} = 0$

- $h_{\mu\nu}^{(0)}$ is an ordinary massless spin-2 field, and $h_{\mu\nu}^{(M)}$ describes massive spin-2, with $M^2 = -2 1/\alpha$.
- Irreducible representations $D(E_0, s)$ of the AdS group SO(3, 2) are characterised by their lowest energy E_0 and their spin s. These are the eigenvalues of the representation under L_{04} and L_{12} , where L_{AB} are the SO(3, 2) generators. Unitarity requires $E_0 \ge s + 1$, with masslessness in the case of equality.
- For spin-2, E_0 is related to M by

$$E_0 = \frac{3}{2} \pm \sqrt{\frac{9}{4}} + M^2$$

Thus unitary spin-2 requires the plus sign, and $M^2 \ge 0$.

• Can have non-tachyonic negative M^2 , provided $-\frac{9}{4} \le M^2 < 0$.

Energies of the spin-2 Modes

• The energies of the massless and massive spin-2 modes, calculated from the Hamiltonian describing small fluctuations around AdS_4 , are

$$E^{(0)} = -\frac{1}{2\kappa^2} (1+2\alpha) \int \sqrt{-g} \, d^4 x \, \nabla^0 h^{\mu\nu}_{(0)} \, \dot{h}^{(0)}_{\mu\nu}$$

$$E^{(M)} = \frac{1}{2\kappa^2} (1+2\alpha) \int \sqrt{-g} \, d^4 x \, \nabla^0 h^{\mu\nu}_{(M)} \, \dot{h}^{(M)}_{\mu\nu}$$

The integrals are negative, so we need

$$\alpha \geq -\frac{1}{2}$$

in order to avoid negative energies for the massless spin-2 modes. The massive spin-2 then have negative energies.

- One way to avoid the massive spin-2 ghosts could be to eliminate these modes by imposing suitable boundary conditions at infinity. The fall-off is of order $e^{-E_0 \rho}$, so lower E_0 modes fall off more slowly. In particular, the non-unitary modes with $E_0 < 3$ fall off more slowly than the massless modes.
- If we arrange for all the massive spin-2 to have $E_0 < 3$, then boundary conditions could eliminate the ghosts. (This is effectively done anyway for the minus-sign choice in E_0 .)

The Non-Tachyonic Window

• The massive modes are non-unitary and still non-tachyonic if $-\frac{9}{4} \le M^2 < 0$. This translates into

$$\alpha \leq -\frac{1}{2}$$
 or $\alpha \geq 4$

• We need $\alpha \ge -1/2$ for the massless modes to be ghostfree, so this leaves

$$\alpha = -\frac{1}{2}$$
 or $\alpha \ge 4$

- The case $\alpha = -1/2$ is *Critical Gravity*. Here the massless modes have zero energy, and the massive modes become massless, giving logarithmic modes (also non-unitary).
- $\alpha \ge 4$ gives a 1-parameter family of models where the massless modes have positive energies, and the massive modes are all non-unitary, $E_0 < 3$, and can be eliminated by boundary conditions at infinity.
- The limiting case $\alpha \to \infty$ is pure Weyl-squared conformallyinvariant gravity, as discussed recently by Maldacena.

Lifshitz and Schrödinger Vacua

• In addition to AdS, Einstein-Weyl gravity also admits Lifshitz vacua,

$$ds^{2} = -r^{2z} dt^{2} + \frac{dr^{2}}{\sigma r^{2}} + r^{2}(dx^{2} + dy^{2})$$

with

$$z = \frac{8\alpha + 1 \pm \sqrt{2(1 + 2\alpha)(16\alpha - 1)}}{4\alpha - 1}, \qquad \sigma = \frac{6}{z^2 + 2z + 3}$$

z is real if $\alpha \ge 1/16$ or $\alpha \le -1/2$.

- In conformal gravity $(\alpha \longrightarrow \infty)$, the Lifshitz scaling is z = 4 or z = 0. These solutions generalise in conformal gravity to S^2 or H^2 spatial topologies.
- There exist also Schrödinger vacua in Einstein-Weyl gravity,

$$ds^{2} = -r^{2z} dt^{2} + \frac{dr^{2}}{r^{2}} + r^{2}(-2dt dx + dy^{2})$$

with

$$z = \frac{1}{4} \pm \frac{1}{4} \sqrt{1 - \frac{4}{\alpha}}$$

Solutions in Einstein-Weyl and Conformal Gravity

- Since the Bach tensor vanishes for Einstein metrics, all solutions of cosmological Einstein gravity $\mathcal{L} = \sqrt{-g(R 2\Lambda)}$ are also solutions of Einstein-Weyl gravity (with the same Λ). In particular, Schwarzschild-AdS and Kerr-AdS are solutions.
- Beyond the Einstein metrics, it is difficult to obtain general classes of explicit solutions of the fourth-order equations of Einstein-Weyl gravity, even if one assumes spherical symmetry (à la Schwarzschild-AdS). More can be done explicitly in pure conformal gravity:
- Since the equations of motion of conformal gravity are conformally invariant, any metric that is conformally Einstein is a solution.
- In fact, solutions of conformal gravity that are *not* conformally Einstein are quite hard to come by.
- A test for being conformally Einstein: If $\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$ and $\tilde{R}_{\mu\nu} = \frac{1}{4} \tilde{R} \tilde{g}_{\mu\nu}$, then $V_{\mu} \equiv \partial_{\mu} \log \Omega$ satisfies

$$\nabla^{\mu}C_{\mu\nu\rho\sigma} + V^{\mu}C_{\mu\nu\rho\sigma} = 0$$

So the existence of such a V^{μ} is a necessary condition.

Non-conformally Einstein Solutions of Conformal Gravity

 As of 2000 (2008?), only one Lorentzian solution of conformal gravity that is not conformally Einstein was known (Nurowski and Plebanski):

$$ds^{2} = dx^{2} + dy^{2} - \frac{2}{3}(dx + y^{3}du)(ydr + \frac{11}{9}dx - \frac{1}{9}y^{3}du)$$

(And any conformal scaling thereof.)

• In Euclidean signature, any metric with (anti) self-dual Weyl tensor,

$$C_{\mu\nu\rho\sigma} = \pm \frac{1}{2} \epsilon_{\mu\nu}{}^{\alpha\beta} C_{\alpha\beta\rho\sigma}$$

is a solution of conformal gravity. Non-conformally Einstein examples are known.

• Among Bianchi IX metrics,

$$ds^{2} = dr^{2} + a^{2}\sigma_{1}^{2} + b^{2}\sigma_{2}^{2} + c^{2}\sigma_{3}^{2}$$

where a, b and c are functions of r and σ_i are left-invariant 1forms of SU(2), there exist triaxial solutions $(a \neq b \neq c \neq a)$ of conformal gravity that are not conformally Einstein. (All biaxial solutions (a = b) are conformally Einstein.) Spherically-Symmetric Black Holes in Conformal Gravity

 Using general coordinate invariance and conformal scaling, the most general conformal class of "spherically symmetric" metrics is

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} d\Omega_{2,k}^{2},$$

where

$$d\Omega_{2,k}^2 = \frac{dx^2}{1 - kx^2} + (1 - kx^2)dy^2$$

with k = 1, 0 or -1 (S^2 , T^2 or H^2). The metric solves the conformal gravity equations if (Reigert,...)

$$f = br^{2} + \frac{c^{2} - k^{2}}{3d}r + c + \frac{d}{r}$$

where b, c and d are constants.

• If $c^2 = k^2$, the metric is Schwarzschild-AdS. When $c^2 \neq k^2$, there is an additional parameter, associated with a slower fall-off (relative to the br^2 cosmological term) than the usual "mass term" d/r. This may be viewed as massive spin-2 "hair."

Black Hole Thermodynamics in Conformal Gravity

• The general spherically symmetric solution in conformal gravity is in fact a conformal scaling of Schwarzschild-AdS $d\tilde{s}^2$, namely $ds^2 = \Omega^{-2} d\tilde{s}^2$ with

$$d\tilde{s}^{2} = -\left(k - \frac{1}{3}\Lambda\rho^{2} - \frac{2M}{\rho}\right)dt^{2} + \left(k - \frac{1}{3}\Lambda\rho^{2} - \frac{2M}{\rho}\right)^{-1}d\rho^{2} + \rho^{2}d\Omega_{2,k}^{2}$$

with $\Omega = 1 + q\rho$ and $r = \rho \Omega^{-1}$. The parameters in the general conformal gravity solution are then given by

$$b = 2Mq^3 + kq^2 - \frac{1}{3}\Lambda$$
, $c = k + 6Mq$, $d = -2M$

Since the conformal factor is singular at $\rho = \infty$, the thermodynamic properties of the black hole in conformal gravity differ from those of the Schwarzschild-AdS black hole.

• Calculation of the mass of the general black hole in conformal gravity requires care. The presence of the slower fall-off of the extra "massive spin-2" term in the metric function *f* means that the usual methods for calculating the mass give divergent results. (Deser-Tekin involves a background subtraction, which is often fraught with ambiguities. Even AMD (electric component of Weyl tensor at infinity) diverges because of slower approach to AdS.) • For any vector ξ , first variation of Lagrangian 4-form is given by $\mathcal{L}_{\xi}L = \mathcal{E}\mathcal{L}_{\xi}\phi + d\Theta(\phi, \mathcal{L}_{\xi}\phi)$, where ϕ represents the fields (metric,...) and \mathcal{E} the equations of motion. Then if ξ generates a symmetry, there is a conserved current $J = \Theta - i_{\xi}L$ with J = dQ on-shell. For conformal gravity,

$$Q = \frac{\alpha}{4} \epsilon_{\mu\nu\rho\sigma} \left(C^{\rho\sigma\alpha\beta} \nabla_{\alpha} \xi_{\beta} - 2\xi_{\beta} \nabla_{\alpha} C^{\rho\sigma\alpha\beta} \right) dx^{\mu} \wedge dx^{\nu}$$

This gives a finite result for the mass E of the general conformal black hole, and it agrees with the standard formula when $c^2 = k^2$.

• If we write the metric function as

$$f = -\frac{1}{3}\Lambda r^2 + \Xi r + c + \frac{d}{r}$$

where $3 \equiv d = c^2 - k^2$, then the mass *E* satisfies the first-law relation

 $dE = TdS + \Theta d\Lambda + \Psi d\Xi$

and the Smarr-type formula $E = 2\Theta \Lambda + \Psi \Xi$, where

$$\Psi = \frac{\alpha(c-k)}{24\pi}$$

is the thermodynamic variable conjugate to the massive hair parameter \equiv .

z = 4 Lifshitz Black Holes in Conformal Gravity

• These are given by

$$ds^{2} = -r^{8}fdt^{2} + \frac{4dr^{2}}{r^{2}f} + r^{2}d\Omega_{2,k}^{2}, \quad f = 1 + \frac{c}{r^{2}} + \frac{c^{2} - k^{2}}{3r^{4}} + \frac{d}{r^{6}}$$

The metric is again conformal to Schwarzschild-AdS $d\tilde{s}^2 = \Omega^2 ds^2$ with $\Omega = q[r(c-k+3r^2)]^{-1}$ and $\rho = r\Omega$. The conformal factor is singular at infinity, and so the asymptotic global structure is very different from Schwarzschild-AdS.

- It is not obvious how to define, or calculate, the black hole mass in this Lifshitz case. Not only the usual Deser-Tekin and AMD methods, but also the conserved charge Q we used earlier, give divergent answers. One possibility is to defined the mass E by integrating the first law dE = TdS.
- For k = 0 solutions, there exists a conserved Noether charge associated with a global scaling symmetry of the metrics (analogous to one considered by Bertoldi, Burrington and Peet for Lifshitz black holes in Einstein-Proca). This can be used to give a definition of mass in these cases, which is in agreement with the integration of the first law.
- There is also a z = 0 Lifshitz black hole, with $ds^2 = -fdt^2 + 4dr^2/(r^2f) + r^2d\Omega_{2,k}^2$ and $f = 1 + c/r^2 + (c^2 k^2)/(3r^4)$.

AdS and Lifshitz Black Holes in Einstein-Weyl Gravity

• We no longer have conformal symmetry, and the general ansatz for spherically-symmetric solutions is

$$ds^{2} = -a(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{2,k}^{2}$$

The equations can be reduced to second-order equations for a(r) and f(r), but these seem not to be solvable explicitly.

• We can use numerical methods to solve the equations. A convenient way is to construct a series expansion near the horizon at $r = r_0$, and use this to set initial conditions just outside the horizon.

$$a(r) = (r - r_0) + a_2(r - r_0)^2 + a_3(r - r_0)^3 + \cdots$$

$$f(r) = f_1(r - r_0) + f_2(r - r_0)^2 + f_3(r - r_0)^3 + \cdots$$

 a_n and f_n for $n \ge 2$ are solved for in terms of r_0 and f_1 .

• Schwarzschild-AdS corresponds to $f_1 = 3r_0 + k/r_0$. Defining

$$f_1 = 3r_0 + \frac{k}{r_0} + \delta \,,$$

then taking $\delta \neq 0$ corresponds to turning on the massive spin-2 "hair."

• We find that if the Weyl-squared coefficient α lies in the range where the massive spin-2 excitations around AdS have $m^2 < 0$, namely $\alpha < -\frac{1}{2}$ or $\alpha > 0$, then there exists a range of δ around $\delta = 0$ for which the equations of motion integrate stably out to $r = \infty$.

$\delta_{-} \leq \delta \leq \delta_{+} \, .$

- For δ inside this range, the solution approaches AdS as $r \to \infty$.
- For $\delta=\delta_-$ or $\delta=\delta_+,$ the solution instead approaches the Lifshitz vacuum discussed previously, with z being the larger root of

$$z = \frac{8\alpha + 1 \pm \sqrt{2(1+2\alpha)(16\alpha-1)}}{4\alpha-1}$$

- If δ outside the range, the solution is singular at large r.
- Thus when $\alpha < -\frac{1}{2}$ or $\alpha > 0$, there exists a 1-parameter family of more general asymptotically AdS spherically symmetric black holes with massive spin-2 "hair." There exist also two discrete endpoints of the parameter range where the black hole is asymptotically Lifshitz.
- If $0 < \alpha < 4$, the massive mode has $m^2 < -9/4$, outside the Breitenlöhner-Freedman bound. Then, the solutions will be unstable to time-dependent runaway modes.

Conclusions

- Einstein-Weyl gravity with $\alpha < -\frac{1}{2}$ or ≥ 4 provides a possibly viable description of gravity in which the massive spin-2 modes, which have slower fall-off than the massless modes, could be truncated by boundary conditions. (Similar to the mechanism discussed by Maldacena for conformal gravity.)
- All solutions of Einstein gravity are also solutions of Einstein-Weyl gravity. Finding the more general solutions of Einstein-Weyl gravity explicitly is difficult, even for spherical symmetry. Numerical analysis indicates further black holes exist, both with AdS and Lifshitz asymptotics.
- The equations of motion of pure conformal gravity $(\alpha \rightarrow \infty)$ are easier to solve. There are interesting open problems here, such as finding classes of solutions that are not conformally Einstein.
- The thermodynamics of the black holes in conformal and in Einstein-Weyl gravity is not well understood. Can one give a meaning to energy for asymptotically Lifshitz black holes?
- It would be interesting to study more complicated solutions, such as rotating black holes.