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Semiclassical Gravity

Semiclassical Einstein Equation (schematically):

o Fat

G;LLLH (gu‘f}:f’}) — ﬁ'(-rzlg.y)q tx (TMV) ¢

(z,.. is the Einstein tensor (plus covariant terms
associated with the renormalization of the quantum field)
r = 81y and G 1s Newton’s constant

Free massive scalar field , .
(d—m~—&R)p =0.

T;u—v i1s the stress-energy tensor operator
()4 denotes the expectation value



Part I. Stochastic Gravity

Einstein- Langevin Equation (schematically):
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177, 1s due to classical matter or fields

A

TSE* = <.TML">C1 T ;Lf

1, 1s a new stochastic term

related to the quantum fluctuations ot 1,



NOISE KERNEL

e Exp Value of 2-point correlations of stress tensor: bitensor

* Noise kernel measures quantum flucts of stress tensor

Nabw(x,y>=§<{é§(x>,tw<y>}> £, =T —(T,)F

* The noise kernel is real and positive semi-definite as a
consequence of stress energy tensor being self-adjoint

the ultraviolet behaviour of {T 5 (x)T q(v)) 15
the same as that of (T (x }}{it;{}‘}}.



How could a quantum field give
rise to a stochastic source?

It can be represented by a classical stochastic tensor source

é:ab[g]

(Gaussian via influence functional Feynman and Vernon 1963)

(Gan)s =0 (Gap (X)Sea (YD) = Nopeg (X, Y)

« Symmetric, traceless (for conformal field), divergenceless



Classical Stochastic Field
assoc.with a Quantum Field

» Stochastic tensor 1s covariantly conserved 1n the
background spacetime (which 1s a solution of
the semiclassical Einstein equation).

V9eanlg: x) = 0.
 For a conformal field &., is traceless:

g“h_ ab [g: X) = U‘

Thus there 1s no stochastic correction
to the trace anomaly



Einstein-Langevin Equation
[Hu & Matacz, PRD1994, Campos Verdaguer 1996, Lombardi and Mazzitelli, 96 ]

* We will assume linear perturbation of semiclassical solution

gab + hab
But stochastic gravity is NOT restricted to linear perturbations

 Einstein-Langevin equation: G, = K((‘f>g+h + &)

GO +h]=x(TL[g +hD),, + &, [0]
(V2. —m*—ER)p =0

g+h
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Noise Kernel from Green Functions

Phillips and Hu, PRD63, 104001 (2001)

e Wightman Function

Gy =G (x,9)=(P(x) p(»))]

(d(x) p(») d(x") d(¥'))=GCryr Gyor+Gryr Gy
+ Gy Gyryr (3.15)

Nabc"d"(xay):Nabc’d’[G—l—(xay)]_I_Nabc’d"[G-l—(yax()]- )
3.21



For timelike separated points, can express in
terms of the Feynman (time ordered) Green function
G (x,y) and the Dyson (anti-time-ordered) Green function

Gp(x,y):

Nabc’d’(xay) :Nabc’d’[GF(xay)] +Nabc’d’[GD(xay)]-7
(3.22)
Hadamard (or Schwinger) function

GV (x,x")={d(x),d(x")})

{curly brackets} denote symmetrized operator product.

Ford et al have used the Hadamard function for consideration
of effects of stress energy tensor fluctuations



A general expression for the Noise Kernel in terms of
four covariant derivatives acting on products of the
Green function for a given quantum field
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Phillips and Hu, PRD63, 104001 (2001)



Essential to obtain expressions for the
Noise Kernels -- Exp Value of 2-point
correlations of stress tensor bitensor

for the investigation of fluctuations and
backreaction problems

 An important example is fluctuations in an
evaporating black hole and the

 Backreaction of Hawking radiation on it.

e Black hole end-state problem and
information loss issue.



Part Il. Black Holes

® A black hole emits thermal radiation (fixed
background geometry): 7' = n? /87

p/ Hawking
¢ Back reaction on the geometry using

semiclassical gravity = black hole evaporation

dM 5 rmp?
dt P (T)

® Horizon fluctuations involving long timescales
(evaporation time):

Bardeen: Massar

» Evaporating BH: Ford & Wu => 00 ~ m,,
Bekenstein —> §A/ ~ M when M ~ (m,M3)"/?



Semiclassical Gravity

¢ Semiclassical Einstein equation:

~
ST

(—;{'r b *ﬂ — K <Tm’_3 {'ﬂ> = ”ﬁ

ren p

® Spherically symmetric geometry:

% #

r

2 2abiw. 1) 2m(v, 1 2 CRa 2 7 102 .2 2
ds® = —e?¥(vr) (1 _ mu T }) dv® + 2e"\"" dvdr + v (df*” + sin” Odyp*)



® Semiclassical Einstein equation: Ly o 1/M?>

') . . / _ Y
% = 47?-'3‘2T:, = —g" Ly + 0 (mlig 5)
ov
‘:). .. P i .
Om 4o = O (Ln)
or
(‘)L‘ j J
O = 4w, = O (Lu/n
"

® Energy-momentum conservation:

O (27T alg Al
0 (';) T7) i 0011, —0 OM < r < M/Ly
) )X))

Relates outgoing positive energy flux at large r to
ingoing negative flux on the horizon.




Stochastic Gravity

¢ Einstein-Langevin equation:

Yon L9+ h] =k < 9+ f’f]> + +iab
ren

| I | | . .
EabT)Eed(Y)) e = 5 tap (). ted(y)}). tab = Lap — (Lap

For spherically symmetric systems:

® /| — () sector of metric fluctuations:
- not a complete solution,

- but goes well beyond 2-D dilaton-gravity models.

® Proceed analogously to the mean evolution



Different views, divergent claims, but none from
real calculations based on solid viable theories

¢ Assuming simple connection between outgoing
and ingoing energy flux fluctuations: Ford & W

® Simple qualitative explanation:  (even without fluctuations)
Initially 00/ ~ m,—> 60 ~ M for M ~ M./’

Ford and Wu neglected important

Secular effect due to (7'[g + h])ren.

Our result agreed with Bekenstein 83

B. L. Hu and A. Roura, Metric fluctuations of an evaporating black hole from back-
reaction of stress tensor fluctuations Phys. Rev.D 76 (2007) 124018



In-out energy flux connected. Yet,
Flux fluctuations not connected

¢ The inequivalence can be explicitly proved:

/rh‘h(ﬁ‘}/rfﬁ h(v)r* (€0 (v, )& s r))e

divergent on the horizon, but finite away from it.



Main conclusions
from Hu and Roura, Phys. Rev. D 76 (2007) 124018

® [arge fluctuations build up over long times for
evaporating black holes.

® Assumptions about correlations between
outgoing and ingoing not accurate — need to

» study fluctuations near the horizon in detail,

» find the right way to probe those metric fluctuations.



Noise Kernel needed for
Fluctuations Phenomena and
Backreaction Problems

We describe recent results in the calculations of the noise
kernels of conformally-invariant scalar fields in:

0) spacetimes conformal to an ultrastatic spacetime (under quasilocal
approximation) A. Eftekharzadeh, Jason Bates, Albert Roura, P. R. Anderson
and B. L. Hu, Noise kernel for a quantum field in Schwarzschild spacetime
under the Gaussian approximation, Phys. Rev. D85, 044037 (2012)

1) static de Sitter and all conformally-flat spacetimes (exact expressions)
* This talk: Jason D. Bates, Hing-Tong Cho, Paul R. Anderson and B. L. Hu,
Exact noise kernel for quantum fields in static de Sitter and conformally-flat
spacetimes (in preparation)



2) massive quantum scalar field with
arbitrary coupling in Euclidean R*N and
AdS”N spaces via the generalized zeta-
function method.

[Hing-Tong Cho and B. L. Hu, “Stress-energy Tensor
Correlators of a Quantum Field in Euclidean R*N and
AdS”™N spaces via the generalized zeta-function method”
Phys. Rev. D84, 044032 (2011)]



® Black hole in thermal equilibrium:

» Stability—> AdS / box (reflecting or isothermal walls)

» Semiclassical back reaction —» small correction York

Backreaction with Fluctuations: Program already

laid out in S. Sinha, A. Raval and B. L. Hu, “Black Hole
Fluctuations and Backreaction in Stochastic Gravity” in
Bekenstein issue of Foundations of Physics Thirty Years of
Black Hole Physics edited by L. Horwitz (2003). [gr-
qc/0210013] Summarized in B. L. Hu and E. Verdaguer,
Stochastic gravity: A primer with applications, Class.
Quant. Grav. 20 (2003) R1-R42 [gr-qc/0211090]

Expect fluctuations small, can use thermodynamic
arguments or QFT ) Equilibrium BH: Zurek —» 6107 ~ i,



Strategy for calculating NKs in
(quasistatic) black hole spacetimes:

® Hartle-Hawking state —> Minkowski vacuum.
Boulware state — Rindler vacuum (large
fluctuations near the horizon).

® Near horizon region for arbitrary [ — de Sitter.
Hartle-Hawking state — Bunch-Davies vacuum.

Go to de Sitter spacetime. Static coordinate:
Gibbons-Hawking state corresponds to Hartle-Hawking state.



Minkowski to conformally-flat

e One step further back, start with MinkowsKi,

then to conformally-related spacetimes.

NK in MinkowskKi space:
R. Martn and E. Verdaguer, Phys. Rev. D 60, 084008 (1999).

e Use the conformal transformation for the NK
for conformally invariant fields to obtain the
NK for the Bunch-Davies state in the co-
moving de Sitter coordinates. (cosmology)



Use for cosmological problems

 Bunch-Davies vac are useful for stress-
energy tensor fluctuations considerations
In cosmological structure formation, e.g.,

L. H. Ford, S. P. Miao, K.-W. Ng, R. P. Woodard, and C.-H. Wu,
Phys. Rev. D 82, 043501 (2010).

o Gravity Waves from Quantum Stress

Tensor Fluctuations in Inflation, e.g.,

Chun-Hsien Wu, Jen-Tsunqg Hsianq, L. H. Ford, Kin-Wanqg Nq
Phys. Rev. D 84, 103515 (2011)



http://arxiv.org/find/gr-qc/1/au:+Wu_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Hsiang_J/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Ford_L/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Ng_K/0/1/0/all/0/1

NK for conformal fields for all
conformally-flat spacetimes

We compute exact expressions of the noise kernel for
conformally invariant scalar fields with respect to the
conformal vacuum,

valid for any arbitrary separation (timelike, spacelike
and null) of points for all conformally-flat spacetimes.

e Related recent work:

G. Perez-Nadal, A. Roura, and E. Verdaguer, JCAP 05 (2010)
036. minimal field in de Sitter,

H. T. Cho and B. L. Hu, Phys. Rev. D84, 044032 (2011)
massive fields in N-dim AdS space, arbitrary coupling.



» For the conformally invariant scalar field the noise kernel
transforms as

~

Nabcldl(xj X/) — g)(X)_2 Nabc’d’ (Xj X,)SZ(X,)_2

» Thus, the noise kernel for the conformal vacuum of any
conformally flat (Cartesian) metric is

_9 . O30p0 10’ T(320b)(c'O !
Nabc’d’(XaX,) — Q(X) Q(XI) ? [ a4871.4(:0.6 - (32471(4(:05 )
40 3(c'Tdryp — Wabﬁcfdf]

1927404

_|..

1 o
g — 5 (—'Atz "Jr“ AX2)



>

>

>

Static de Sitter

de Sitter is a vacuum solution to the Einstein equations when
a cosmological constant is included.

ds® = —dt® + Er’(n[d}’{'g + dy? + dz?]

However, written in the static coordinate system, the de Sitter
metric Is:

2 d 2
ds® = — (1 — '0—2) dT? + P = + p?db? + p? sin® Od
!

1%

This metric has a form similar to Schwarzschild, and exhibits
a cosmological horizon at p = «a.

This gives us an opportunity to test the Schwarzschild results.



» [ he exact noise kernel for the conformal vacuum in the static

de Sitter coordinates:
1

3]
1274 [{12 ("\f BB' T — 2) + 2pp/ {:{)5(}-)]
X {n:’..‘rq [—1213 BB' v + BB’ (T2 + 14)
— (2B +2B" - 6) (r* —1)]
402 pp cos(7) (3\/ BB —2 (% — 1))
+2p°p" % (72 = 1) cos(27) }

Nyt g (X, X7) =

p?
B = 1--— T =2cosh(AT /«a)

¥
cosy = cosHcosh’ +sinfsinf’ cos(¢p — ')



Part Ill Cosmology

Primordial cosmological perturbations problem via
Stochastic Gravity:

* (Gives result equivalent at linear order to usual method of
guantizing metric and inflaton perturbations

e But can treat quadratic orde perturbations

which is needed in R2 trace anomaly driven (Starobinsky
1981) inflation

A. Roura and E. Verdaguer, Phys. Rev. D 78, 064010 (2008).



SEMICLASSICAL EINSTEIN EQUATION

Renormalization introduces quadratic tensors

Gab[g]+Agab aAab g] IBBab[g] K( b[g]>ren

where pdb _ I 4oy \/_Ccdef o ctef

\/_ 5gab

B = d*x R’
\/7 gab j \/7

Tab :Va¢vb¢_5gab(VC¢vc¢+m2¢2)+§(gabvcvc _vavb _|_Gab)¢2




INFLUENCE FUNCTIONAL

e Open quantum system (Feynman-Vernon 63)
[system% h,, @ ¢ /Lenvironmeni
e = [D[4,]D[4 Jexp(S,[4,.9" |-S.[4.97 )

Fie

S.F(g+hi)=%j<fx>[hx]_.-j[hx]|-|xy{hy}+éﬂ[hx]ny h, |
[h]zh+_h‘ {h} =(h*+h7)/2 (x,y denotes ab.cd)

| . Ve | ok
Hy =5 I (T, o TET, )

T LG +hD ey = 2] d*yy=g H e (6, I (y)



INFLUENCE FUNCTIONAL

* Closed Time Path effective action at tree level in metric pert.

I ho,h|=S [h*|-S [h™ |+S,[h",h" [+O(h*)
Sg IS EH action plus quadratic terms.

e Integral identity (Feynman Vernon 1963):

v o L{fInN, [0 ) foeesn( L [fenz, o1 e n)

 Probability distribution functional of a Lifen-ig
classical stochastic field &£ (x) P[g]ce ?

giSi! [h*,h7] ID§P[§]e (RCSIF+%jf[h1j _ <eI(ReS,F+;_‘-§[h])>



STOCHASTIC EFFECTIVE ACTION

e Define a stochastic effective action:

+ |- + — 1
[y |, h5& =8, h"|=s,[h ]+ReS,F+§j§Z[hZ]

él_‘Stc
sh’

» fleld equation from: =0

h*=h

mm) the Einstein-Langevin equation

GO[g+h]=x(TL[g + ), + K&, [0]



SOLUTIONS OF EINSTEIN-LANGEVIN
EQUATIONS

* These stochastic equations determine the correlations

h,y () = hy () + 5[ d*X' =g G ok, (%, X)EX (x)

(e OO (1)) = (NG, GO, (V) + 57 [[ Gl (6 XINE (X, y )Gy (¥, Y)

Intrinsic fluctuations

(flucts In the Initial state)

+

N0

Induced fluctuations

(due to matter field flucts)

« Stochastic metric correlations is equivalent to quantum

metric correlations in 1/N:

(Calzetta, Roura, Verdaguer)

—<{f%5<x>, o (NP = My (O (),



STOCHASTIC GRAVITY AND PRIMORDIAL
COSMOLOGICAL PERTURBATIONS

e Quantum fluctuations of inflaton are
seeds for structure formation

« Simplest chaotic inflationary model (Linde):
Massive minimally coupled inflaton field, initially
at average value larger than Planck scale

~ ", FEV() — mEg,

1 1
L(4)=—0,40°¢+—m’¢’
L ary Al
« Background inflaton field and FRW metric

s =()  ds’ =a’(p)(~dn’+5;dx'dx))



PERTURBATIONS
e Inflaton and scalar metric perturbations
p(X) =g +p(x)  (P)g =0
ds® =a’*(n)[—(1+2®)dn* + (1-2¥)s,dx'dx’]
* Einstein-Langevin equations
G191 x(T (9] + G [h]—x(T,[h]) = &,y [g]
zeroth order metric g iIs assumed to be quasi- de Sitter.
T =V ,0—— G0 (V. 969+ mg)
XD, = (Hotwprel

=g-+h

O

TE(T)



STRESS TENSOR CORRELATIONS
(Tfy +h]) =(T[g+h]),, +(Fg +hD, +(T[g+hD,,

(EDIgl= (B PLal, . + (BRDIGL . . =(EVED), +(£PE),

« assume Gaussian state: (PYy=0 (Gagp)=0

 two Independent stochastic sources: ¢® @
Independently conserved

* Including only the first (linear) term: (ﬂ)@j¢2 ,
®»

we will show that the stochastic gravity
formulation gives equivalent results as the traditional

guantized metric and scalar field perturbations



E-L eqn for linear perturbations

~a? ((07f)e +€) = BH(HO + W) - V20,

Ca? ((0T5)a +6) = Oi(V +HD)

%(12 (<(>T~”>“ + SJ) = {(27{’ +H?) D+ HD +
U 4 2HU + §V2D} - %5@*"*0,&.051).

where H = d/(n)/a(n), D =& — ¥, V* = 60,0,



« Since (T,)=0,Gi=]j) = &=0,(#])
m=) metric perturbations @ =Y

« Fourier transf. of Oi-component: (neglecting non-local term):

2ki(H(Dk+(D'k):K§k(0i) =%
Ji

» Retarded propagator for @,

K a() :
ret(nn)—ZkL (n—-n—-— 2 f(n,n)j



With ¥ = & we get for the ii component of E-L eqn:

ga,Q (<57";‘i>@ + g) — (2H' + H?) © + 3HD + D"

s—

Two unknowns 1. scalar metric perturbations ®(z)

2. (¢p)gthe expectation value of the quantum operator
for the inflaton perturbations on the spacetime
with the perturbed metric, (©|g + h])

These three equations reduce to two because of the Bianchi
ldentity, which holds here since the averaged and stochastic
sources in the EL egn are separately conserved.

the one hand, the conservation of (67,)4 is equivalent to the Klein-Gordon equation for the expectation value (9)y,
which is completely analogous to Eq. (36):

()5 +2H (Gl = V2 (2 + 12 (9 — 40T + 2?9 = . (11)

On the other hand, the conservation of the stochastic source is a consequence of the conservation of the noise kernel,
which in turn relies on the fact that the quantum operator for the inflaton perturbations ¢|g] satisfies the Klein-Gordon
equation on the background spacetime, (VGVG — mz) o) =0.



Equivalence with Quantum approach:

Can show that EL egn reduces to (Roura and Verdaguer 2007)

i (H — ‘}—> - V2P + (H" - Hi) ¢ =0,

0 0,

Same as the conventional approach via quantized linear

perturbations, e.g., Eq. (6.48) of
V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).

Comments:

1. In Fourier space nonlocal terms in the integro-differential equation in the spatial
sector simplify to products. Non-locality in time in this equation disappears due
to an exact cancellation of the different contributions from <()j;b> P

2. Seems like there is no dependence on the stochastic source.
But the solutions to ELeqn should also satisfy the constraint egn at the initial
time in addition to the dynamical eqn. The initial conditions for ®;. (7o) and @} (o)
have dependence on the stochastic source.



CORRELATIONS FOR METRIC
PERTURBATIONS

 Solutions of E-L equation:
(@, (D, (7)) = (27) (K +K)[[ G (£,£,), G
(E&e)s E—<{t’~;’é>tk.}>

Bt (7)) = Kk (1) 8 0, B, 0, (1))
A&8m), 9. (1)} =G  (m,,m,)

IS the Hadamard function for free scalar field on de Sitter,

In Euclidean vacuum 1
a(7) = ———3 -0 <77 <0
n



METRIC PERTURBATION
CORRELATIONS

Computing G." perturbatively in m/m;
assuming slow roll  @(t)F-ma(m/m,)

taking (rather insensitive to initial conds.) 5, - —

(D, (M) Dy.(n")), U 87° (m ) k= (27) §(k +k Y cos[k(n -]

« Harrison-Zel'dovich scale inv. spectrum large scales kn <1

. . . m_ .
» Amplitude of CMB anisotropies =y ——210 ‘
P

« Agreement with linear perturbations approach (Mukhanov 92)

» Stochastic gravity can go beyond linear app. in inflaton flucts.
(Weinberg 05) and deal with Starobinsky (tr anomaly) inflation



Summary: Main Features

1. Semiclassical gravity depends on e.v. of q. stress tensor

S.G fails when flucts. of quantum stress tensor are large

2. Stochastic gravity incorporates these fluctuations
(at Gaussian level) through the noise kernel
acting as source for the Einstein-Langevin equation

3. Stochastic two-point metric correlations agree with quantum
two-point metric correlations to order 1/N in large N expansion

4. Noise kernel the centerpiece for the exploration of
metric fluctuations and backreaction problems of
guantum fields in curved spacetimes.



For Cosmological Perturbation and Structure Formation:
Agreement with linear perturbations approach (e.g.,Mukhanov 92)
But can go beyond linear order in inflaton fluctuations

necessary for trace-anomaly driven inflations (e.g., Starobinsky 1980)

Three recent papers from our group (with Paul Anderson, Jason
Bates, HT Cho, A. Eftekharzadeh and Albert Roura) on the
calculation of NK, both exact expressions and under specific
approximation.

In details, the case of conformal fields in conformally flat
spacetime, in de Sitter, both wrt Bunch-Davies vacuum and
Gibbons-Hawking vacuum.

Relevance to work on structure formation and primordial
gravitational waves in inflationary cosmology and fluctuations of
event horizon and backreaction of Hawking radiation in quasi-
static black holes.



Thank You! #iii!

Hope the finest Russian / Chinese
Theoretical physics tradition will continue.

An advice for the younger generation:
-Try to ride over the adverse effects of
cheap salesman Aca-Business
mentality from the West, and
Rotten Politics of the East.






Quantum Open System

Closed System: Density Matrix ~ 2(¢) = J (¢, :)p(ti).

J(m, q, II: qfa t | I;i,q;, .’I:::? q;: tl) iS the (unitary)
evolutionary operator of the system from initial time t_| to time t.

OPEN SYSTEM: System (s) interacting with an Environment
(e) or Bath (b): Integrate out (coarse-graining) the bath dof renders
the system open. Its evolution is described by the Reduced Density
Matrix

+o0 +oo
p,.(:c,:r") = / dqf dq’p(:r,q; ﬂffaqf)‘s(q = qi)

+ oo +co
pr(z, 2’ t) = / d:c,;[ dz: J.(z,z',t | zi, z} ;) pr(Ti, Tiy ts ).
—00 — oo



Influence Functional

Assume factorizable condition between the system (s) and the bath (b)
initiaIIy p(t = t;) = ps(ts) X pult;),

Evolutlonary operator for the reduced density matrix is

To(zg 2t | 23,2, fme:::/ Dz exp( {5la] - [I}}) Fla,2

+ oo -|-:::- +oc
Influence Flz,z'] f dqy f ] dq; f
Functional _ Qi q;
1
exp (E{Sb[ | + Sint[z, 4] — So[q] — Sint[z’ sf-l]}) X pb(qi, '[li: ti)

E‘ !
Influence Action = exp (E*’Hliﬁr ])




Quantum Brownian Motion Il

System (S): quantum oscillator with time dependent natural frequency
Environment (E) : n-quantum oscillators

with time-dependent natural frequencies = Scalar Field
Coupling: ¢ _nF (x) g_n.

S[z,q] = S[z] +,3E[q] + Sint[z, q

= [ ds|3M(5)ia® + Bs)zi ~ 03 (s)a)

TL

4 3o ma(s)[d + ba()gndn — w3 (s)a2] + 23(*%(3)”@%)-




Influence functional for a Paramp

Flz,z'] = exp{ - f ds f "as [F(a(s) - F((s)) (s, ) [Fals) + F(@' ()

d-.-tf ds’' F{xis}] - F{I’{H}]: v(s,4') :F{E{f}} - F{m’{'q’”: }

S(s) = 5 (F((s) + F (),

AGs) = Fla(s) — P (). Dissipation p and Noise v Kernels
t A(s)u(ss)Z(s) f
Flz, :r]_exp{ / dsA(s / dS/ ds'A(s s')Cs(s, s )}
(E(t = Ca(s,8') = hv(s,s')

Langevm Equation:::

aa_i, B % %i__ _ zag f) /t u(t, s)F (z(s))ds _ —8gf)é (t)




Noise and Dissipation Kernels

Equation of Motion for the amplitude function of a Parametric Oscillator
bn =0and m=1 Kn = mn_(ti)wfa(ti} ji‘n +wi(t)xﬂ = (,

u(s, s') f dwl(w, s, s)[:f*(s )Xo (s') — X (s) X *)]

v(s,s') f dwl(w, s, s') coth (Z:E;) {cnsh 2r(w) [X;(SJXW{;B’) + XN{S}X:,[E’]]

— sinh 2r(w) [ﬂ_zi‘b{”]X:,(s]X:,(s') + ez*"'{“’lx.,,(slxm[a’}ﬂ :

IHw,s,8") = ZJ{“ _ wn]cn[*?]ﬂniﬂr]

2Kn

Spectral Density Function m
I(w) ~ wm n=1: Ohmic, n>1 Supra Ohmic;  n<1 Subohmic

S.(r(n ST (r(n), d(n
Squeezed and Rotation parameters H (r(n), $(n))pen Sy (r(n), 6(n))
e.g., foran |n|t|aI squeezed thermal bath



Stochastic Equations

Master Equation: ihgiﬁ"(t) = [Hyen, p] + iDppl, [2, ] + i Doz [p, [, 4]

+ ?:sz[ia [ﬁrﬁ]] + tDpe [ﬁﬂ Z, ﬁ]] + F[:f:j {ﬁ’ A}

72
. p B(t), .. .. M(t) -2
Wigner Function: For (B, 8) = E;E f_m em;n<z _ % HlT + %>d&,

Fokker-Planck or Wigner Equation

d p 0 1 & 32
-~ — ..__.__.|.,.M' 2:—-|-Ft-—~ 20. (¢t
('HFW(E‘P’ t) [ M(t) 90X "n{:t) dp (£) P {)

82
n,(t}m +2(Dap(t) + Dpa(t)) aEap]Fw[E,p,t}.




Use of exact expressions of the noise kernel for fluc -
bkrn problems in early universe & black holes

1. Examine its behavior in the region near the
cosmological horizon. (they are all finite)

From the well-known mapping we can see the

2. behavior of NK in the Schwarzschild spacetime
wrt the Hartle-Hawking vacuum near the horizon.

3. Check the validity range of quasi-local expansion
in evaluating the NK as done in

|A. Eftekharzadeh, J. D. Bates, A. Roura, P. R. Anderson, and
B. L. Hu, Phys. Rev. D85, 044037 (2012).
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