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1. Introduction

Preliminary

Since the general relativity is nonrenormalizable, there have been
extensive studies for quantum theory of gravity such as string theory,
conventional perturbative gravity, loop gravity and so on.

A perturbatively renormalizable gravity theory can be built by adding
quadratic curvature terms (R2) to the Einstein gravity → Changing
the mass dimensions of couplings. [Stelle ’77 ’78]

→ POWER COUNTING RENORMALIZABLE
However, theories including higher-order time-derivative terms should
endure massive ghost modes.
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(NB) In 2+1 dimensional topologically massive gravity with a
cosmological constant, there exists a critical point such that the
massive mode (ghost) becomes massless and carries no energy, so
that the problem can be solved. (cf. tachyon-classical,
ghost-quantum) [Li, Song & Strominger ’08]
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1. Introduction

Chiral gravity

Similarly, in 3+1 dimensional quadratic gravity with a cosmological
constant, one can find a critical point, where the massive ghost mode
disappears.

The critical gravity can be defined by

ICG[g ] =
1

16πG

∫

d4x
√−g

[

R − 2Λ + αRµνR
µν + βR2

]

,

where Λ is a cosmological constant.[Lu & Pope, PRL106, 181302 (2011)]

(NB) α+ 3β = 0 ( decoupling condition for the scalar graviton)

At the critical point, α = (3/2)Λ, in spite of the renormalizability
without the massive ghost, it becomes trivial in that the entropy of a
Schwarzschild-anti de Sitter (SAdS) black hole which is a solution to
this theory become zero.
(NB)This result can be confirmed by the Euclidean action formulation
of the black hole thermodynamics. [Gibbons & Hawking ’77 ’78, Hawking &

Page ’83]
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1. Introduction

Motivation

Bekenstein: the intrinsic entropy of a black hole which is proportional
to the surface area at the event horizon [Bekenstein ’72 ’73 ’74].
Hawking: the quantum field theoretic calculation for the
Schwarzschild black hole [Hawking ’75]

’t Hooft: the area law of black holes using the brick wall method
[’t Hooft ’85]

(Motivation)
Brick wall method → Area law
Euclidean action formulation → 0

We would like to resolve this issue and study how to derive the
entropy satisfying the area law in the Euclidean action formulation.
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1. Introduction

Strategy

First task is to get a nontrivial free energy by taking into account
higher-order loop corrections in the Euclidean path integral.
(NB) The fluctuation of the metric field will be ignored for simplicity,
i.e. our calculations will be performed in semiclassical approximations.

So, we consider the one loop correction of the scalar degrees of
freedom around the black hole and relate the Euclidean action
formulation to the brick wall method semiclassically.

Eventually, the (one-loop) free energy turns out to be nontrivial even
at the critical condition. It is actually compatible with the free energy
obtained from the brick wall method.
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2. (Classical) Euclidean action formulation
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2. (Classical) Euclidean action formulation

action

(1) The action: Itot = ICG + Iφ, where

Iφ[g , φ] = −
∫

d4x
√−g

[

1

2
(∇φ)2 +

1

2
m2φ2

]

.

For φ = 0, the SAdS black hole is just a classical solution to this model.

(2) The line element: ds2 = −fdt2 + f −1dr2 + r2dΩ2
2 with

f (r) = 1− 2GM

r
− Λ

3
r2 =

(

1− rh

r

)

[

1− Λ

3
(r2 + rhr + r2h )

]

where M = (rh/2G )
(

1− Λr2h/3
)

> 0 is the mass parameter of the black
hole, Λ < 0 is the cosmological constant, and rh is the radius of the
horizon.
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2. (Classical) Euclidean action formulation

boundary terms

(3) The Euclidean action with an auxiliary field fµν [Hohm & Tonni ’10]:

ICG = −
1

16πG

∫

M
d4x

√
g

[

R − 2Λ + f µν
(

Rµν −
1

2
gµνR

)

−
1

4α
f µν (fµν − gµν f )

]

,

IB = − 1

16πG

∫

∂M
d3x

√
γ
[

2K + f̂ ij
(

Kij − γijK
)

]

,

where γij and Kij are the induced metric and the extrinsic curvature of the

boundary, respectively. And f̂ ij in the boundary term is defined as
f̂ ij = f ij + f riN j + f rjN i + f rrN iN j with N i = −g ri/g rr for the
hypersurface described by r = r0. In the Euclidean geometry, the
Euclidean time is defined by τ = it and should be identified by τ = τ + βH
to avoid a conical singularity at the event horizon, where βH is the inverse
of the Hawking temperature.
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2. (Classical) Euclidean action formulation

entropy

(4) The (classical) free energy:

F (0) = β−1
H (I − Ivacuum) = [1− 2αΛ/3]

rh

4G

(

1 +
Λ

3
r2h

)

,

where ICGB = ICG + IB and Ivacuum = I |M=0.
(5) The Hawking temperature:

TH = β−1
H =

1− Λr2h
4πrh

.

(6) The entropy and the energy of the black hole:

S (0) = β2
H

∂F (0)

∂βH
= [1− 2αΛ/3]

πr2h
G

,

E (0) = F (0) + β−1
H S (0) = [1− 2αΛ/3]

rh

2G

(

1− Λ

3
r2h

)

,

which are exactly same with those obtained in Ref. [Lu & Pope ’11].
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2. (Classical) Euclidean action formulation

critical condition

Note that the overall factor [1− 2αΛ/3] vanishes at the critical point
α = 3/2Λ.

Thus, we can confirm that the energy and the entropy of the SAdS
black hole at the critical point vanish in the Euclidean action
formulation.
(NB) The entropy from the brick wall method satisfies the area law.

In what follows, we shall show that the semiclassical treatment of the
Euclidean action formulation can be related to the brick wall method.
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3. (Semiclassical) Euclidean action formulation
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3. (Semiclassical) Euclidean action formulation

Formal definition of the partition function

(7) The (semiclassical) partition function:

Z [g ] = Z (0)[g ]Z (1)[g ]

= exp
(

−βF (0)
)

exp
(

−βF (1)
)

= e iICGB[g ]
∫

Dφ e iIφ[g ,φ],

where the total free energy consists of F = F (0) + F (1).
Note that the tree level free energy F (0) is trivial at the critical point as
seen in the previous section, so that the nontrivial contribution to the free
energy should come from the one loop effective action.
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3. (Semiclassical) Euclidean action formulation

Effective action

(8) The one loop partition function Z (1):

Z (1)[g ] =

∫

Dφ e iIφ

= det−1/2(−�+m2),

(9) The effective action Wφ:

Wφ =
i

2
ln det(−�+m2)

=
i

2
Tr ln(−�+m2)

=
i

2

∫

d4xd4k

(2π)4
ln(kµk

µ +m2),

where kµ is the conjugate momentum of xµ.
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3. (Semiclassical) Euclidean action formulation

Local frames

Note that a (covariant) Fourier transform in curved spacetimes has
not been established.

However, the manifold can be split into a number of small pieces, in
which we can consider a Riemann normal coordinates, i.e.
∫

M d4x
√−g ≃∑U⊂M

∫

U
d4x̃ , where x̃ represents the Riemann

normal coordinates.

Then, one can perform the calculation in the momentum space by

using the Fourier transform, −
∼
� +m2 → k̃µk̃

µ +m2, where k̃ is the
momentum measured in the local coordinates.

Consequently, it is possible to recover the global coordinates for the
covariant result.
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3. (Semiclassical) Euclidean action formulation

Semiclassical Euclidean action formulation cont’d

(10) The Euclidean one loop effective action at the finite temperature:

Wφ =
1

2

∑

n

∫

d3xd3k

(2π)3
ln

(

4π2n2

f β2
+ E 2

m

)

,

= β

∫

d3xd3k

(2π)3

[√
f Em

2
+

1

β
ln
(

1− e−β
√
f Em

)

]

.

where
∑

n ln
(

4π2n2

β + E 2
m

)

= 2β
[

Em

2 + 1
β ln

(

1− e−βEm
)

]

,

E 2
m ≡ g ijkikj +m2 = f k2r +

k2θ
r2

+
k2φ

r2 sin2 θ
+m2.

(NB)
(i) The first term is independent of the black hole temperature.
(ii) The temperature dependent free energy is βF (1) = Wφ.
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3. (Semiclassical) Euclidean action formulation

trick

(11) The one loop free energy:

F (1) =
1

β

∫ ∞

−∞
dω

∫

d3xd3k

(2π)3
δ(ω −

√
f Em) ln

(

1− e−βω
)

= −
∫ ∞

0
dω

1

eβω − 1

∫

Vp

d3xd3k

(2π)3
,

since the delta function can be written as the derivative of a step function,
δ(x) = d

dx
ǫ(x), defining the step function as ǫ(x) = 1 for x > 0 and 0 for

x < 0. Here, Vp is the volume of the phase space satisfying
√
f Em ≤ ω,

which can be explicitly written as

fk2r +
k2θ
r2

+
k2φ

r2 sin2 θ
≤ ω2

f
−m2.
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3. (Semiclassical) Euclidean action formulation

one loop free energy

(12)The number of quantum states with energy less than ω:

n(ω) ≡
∫

Vp

d3xd3k

(2π)3
=

1

(2π)3

∫

Vp

drdθdφdkrdkθdkφ

(13)The one loop free energy (= the brick wall free energy)

F (1) = −
∫

dω
n(ω)

eβω − 1
.
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4. Entropy of a Schwarzschild-anti de Sitter black hole

The number of quantum states with energy less than ω for a spherically
symmetric black hole:

n(ω) =
2

3π

∫

dr
r2
√
f

(

ω2

f
−m

2

)3/2

.

(14) The free energy:

F
(1) = −

2

3π

∫

dr
r2

f 2

∫ ∞

m
√

f

dω

(

ω2 −m2f
)3/2

eβω − 1

≈ −
2π3r4h
45β4ǫ

(1− Λr2h )
−2

in the leading order.
(NB)
(i) rh, ǫ are the event horizon of the black hole and the UV cutoff
parameter
(ii) ǫ is assumed to be very small compared to the event horizon with a
condition m2 ≪ r+/[ǫβ

2(1− Λr2+)].
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4. Entropy of a Schwarzschild-anti de Sitter black hole

(15)The proper length for the UV cutoff parameter:

ǭ ≡

∫ rh+ǫ

rh

dr
√
grr ≈

2
√
rhǫ

√

1− Λr2h
,

which is independent of the parameters of the black hole.
(16)The free energy:

F
(1) = −

8π3r5h
45β4ǭ2

(1− Λr2h )
−3

.

(17) The entropy:

S
(1) = β

2 ∂F
(1)

∂β

∣

∣

∣

∣

β=βH

=
32π3r5h
45β3

H ǭ
2
(1− Λr2h )

−3
.

(18) The energy:

E
(1) = F

(1) + β
−1

S
(1)
∣

∣

β=βH
=

8π3r5h
15β4

H ǭ
2
(1− Λr2h )

−3
.
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4. Entropy of a Schwarzschild-anti de Sitter black hole

(19)The entropy

S (1) =
ℓ2p

90πǭ2
c3A
4G~

by recovering dimensions and plugging the Hawking temperature into Eq.
(17).
(NB)
(i)A = 4πr2h the area of horizon

(ii)ℓp =
√

G~/c3 Plank length
The entropy agrees with the Bekenstein-Hawking entropy
S (1) = c3A/(4G~) when the cutoff is chosen as ǭ = ℓp/

√
90π which is

exactly same as in the case of the Schwarzschild black hole. [’t Hooft ’85]

(NB)
(20)The free energy and the energy:

F (1) = −c4rh

16G
(1− Λr2h ) = − c3A

16G~βH
,

E (1) =
3c4rh
16G

(1− Λr2h ) =
3c3A

16G~βH
.
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4. Entropy of a Schwarzschild-anti de Sitter black hole

(21) The heat capacity:

C
(1)
V ≡ TH

∂S (1)

∂TH

= TH

(

∂S (1)

∂rh

)

(

∂TH

∂rh

)−1

= − c3A
2G~

(

1− Λr2h
1 + Λr2h

)

,

which is positive for rh > 1/
√

|Λ| and negative otherwise. It means that
the SAdS black hole is stable for large black holes and unstable for small
black holes.
(NB)
For Λ = 0, the heat capacity is always negative, which coincides with the
thermodynamic stability of the Schwarzschild black hole.
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5. Conclusion and discussions
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5. Conclusion and discussions

Conclusion
The total free energy consists of the tree and the one loop correction
F = F (0) + F (1), which yield the total entropy S = S (0) + S (1). In
spite of the vanishing tree entropy S (0) = 0, the total entropy gives
the area law from the semi-classical one-loop correction.
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5. Conclusion and discussions

Discussions
So far, we have assumed that both the scalar decoupling condition
and the critical condition are valid on the fixed background. But, one
may wonder whether these conditions are still met or not when one
considers the one loop back reaction of the geometry because it may
affect the classical geometry.
(i) The bare action:

I [g ] =
1

16πGB

∫

d
4
x
√
−g

[

R − 2ΛB + αBRµνR
µν + βBR

2
]

,

with αB = α+ ~δα, βB = β + ~δβ, and G−1
B = G−1 + ~δG−1.

(NB) At the tree level,
α+ 3β = 0 (scalar decoupling condition)
α− 3/2Λ = 0 (critical condition)
Now, the one loop effective action of the scalar field with mass m can
be also written in the form of the divergent higher curvature terms so
that the renormalization yields
αR/GR = αB/GB + ~A/120π
βR/GR = βB/GB + ~A/240π,
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5. Conclusion and discussions

Note that A ≈ ln(µ2/m2) + 2 ln(2/3) +O(m2/µ2) is a divergent
constant for µ → ∞. [Birrell & Davies ’82, Demers, Lafrance & Myers ’95]

It means
αR + 3βR = (~GR/24π) ln(2/3)
αR − 3/2ΛR =
(~GR/480πΛ

2)[4(2Λ2 + 60Λm2 − 45m4) ln(2/3) + 15m2(8Λ − 9m2)]
by appropriate counter terms.

Fortunately, by rescaling µ → 3µ/2, one can still require
αR + 3βR = 0 in order to avoid the existence of the scalar graviton;
however, the critical condition is still violated as
αR − 3/2ΛR = (~GR/32πΛ

2)m2(8Λ− 9m2).

Therefore, one cannot maintain the scalar graviton decoupling
condition and the critical condition simultaneously.
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