Holography of Charged Black Holes with
RF?2 Corrections

Da-Wei Pang! 2 3

1Center for Quantum Spacetime(CQUeST), Sogang University, Korea
2Institute of Theoretical Physics, Chinese Academy of Sciences
SCENTRA, Lisbon, Portugal

Based on ongoing work.
Talk given at ITP, CAS, 04.06.2011



e Introduction
@ Gauge/gravity duality and condensed matter physics
@ A brief review of 1010.0443[hep-th]

e The perturbative solution
@ The set-up
@ The perturbative solution
@ Thermodynamics

e DC conductivity
@ The effective action approach
@ Our case

@ Shear viscosity, thermal conductivity and relevant ratios
@ Shear viscosity
@ Thermal conductivity

e Summary and discussion



Introduction
[ le]

Gauge/gravity duality and condensed matter physics

What is Gauge/gravity duality?

@ A holographic duality between a weakly-coupled theory of
gravity in certain spacetime and a strongly-coupled field
theory living on the boundary of that spacetime.

@ A powerful new tool for investigating dynamics of
strongly-coupled field theories in the dual gravity side.

@ A new window on understanding real-world physics: QCD,
CMT, etc.

@ Two complementary approaches: bottom-up and top-down.
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Gauge/gravity duality and condensed matter physics

Two complementary approaches:

Bottom-up

@ Toy-models coming from simple gravity theory;
@ Basic ingredients: g,,,, A, and/or dilaton ¢;

@ Advantage(s): simplicity and universality;

@ Disadvantage(s): the dual field theory is unclear.

| A\

Top-down
@ Configurations originated from string/M theory;
@ Exact solutions of SUGRA or Dp/Dg-branes;
@ Advantage(s): good understanding on the field theory;
@ Disadvantage(s): complexity.
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A brief review of 1010.0443[hep-th]

The main results of 1010.0443[hep-th]

By R. C. Myers, S. Sachdev and A. Singh

@ Charge transport near 2+1-dim strongly interacting
guantum critical points;

@ Background: Schwarzschild-AdSy;
@ Effective action for A,

1 1
vec = o /d“x\/—_g[—ZFabFab + YL2Caped FPF], (1)
4
@ The DC conductivity

1
opc = — (1 +47). (2)
94
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A brief review of 1010.0443[hep-th]

An alternative form of the corrections

1 1
Nee = ?/délxﬁ[_zlzabl:ab+aL2(RabchabFCd
4
—4RpF3FP. + RF®F,)], 3)

arising from KK reduction of 5D Gauss-Bonnet gravity.
In neutral background R, = —3/L?gap, using the definition of
the Weyl tensor, the action (3) becomes

1 8
o O L2CapegFFC).

(4)

e = /d“ O
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A brief review of 1010.0443[hep-th]

An alternative form of the corrections Contd

It is equivalent to (1) with the following identifications

~N2
0,4 «

1+8a¢ T 158a

(5)

9f =

Thus the charge transport properties are identical. In particular,

1+12a
6z

(6)

oDC =

QUESTION: How about the case with a non-vanishing
chemical potential?
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The set-up

The starting point

Leading order solution: RN-AdS,4. The action

o 1 4 6 L2 ab
The metric
2 2 42
2 I 2 2 2 L_L
dsg = [z [~fo(r)dt* + dx® + dy?] + - AGL (8)
where
M Q2

fo(r) = —3t 9



The perturbative solution
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The set-up

The starting point Contd

The gauge field

0 I
A” = o1 - 2). (10)
The horizon ry satisfies fo(rg) = 0, = M =13 + Q?/ro.
The chemical potential 1o, charge density pg, energy density e
and entropy density sg

L_wQ 20
0 Lzro’ 0 /€2ng|:7
M 27TI'02

0=z 0T 22 )



The perturbative solution
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The set-up

The starting point Contd

The temperature

3ro Q?
T = 1- = 12
0 47T|_2( 3r61 )7 ( )
The extremal limit
To=0, = Q%=3r. (13)

One can verify that the first law of thermodynamics holds

deg = Todsg + pod pg. (14)
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The set-up

The equations of motion

The full action including higher order corrections
S = S3+8S5;

= i/d“x\/—_[RJrE—L—ZF Fab

al?
+g—2(Rabcd FAPF _ 4R,pF3FP: + RF2F,)].(15)

F
a-a dimensionless constant.
The modified Maxwell equation

ValF® —al?(R® g F —2R¥F,"+ 2R F 2 +RF )] = 0. (16)
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0000e

The set-up

The equations of motion Cont'd

The Einstein equation

3 212 2
= + —5FacFb® — —50apF?
LZ g'% ac zgé al

1
I:aab - _Rgab =

aL4 1 cd - ef dpef dpef
( OabRedefF " F™ — 2RagefFb F™ — 2RpgefFa F
F

4

L

+2VIV' FaaFpr) + O;T(—ZgabRchceFde — 2VgVaFpiFY
F

2V VpFa FI 4+ 20F 4 Fpf + 202 Ve Vg F S F 9

+4RcFpiF S + 4RpcFar F S + 2RgFEaF 9 + 2R g FSpF9,)

al? 1
( JabRF? — RapF? + VaVpF2 + gapOF % + 2RFacFp©).

F
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The perturbative solution

The method for obtaining the perturbative solution

The ansatz for the perturbative solution

r2 L2 dr2
ds? = e r)dt? + dx? +dy2]+ G}
Ar) = A1) +H(), (17)

where

f(r) =fo(r)(X +F(r), 9(r) =fo(r)(1+F(r)+G(r)), (18)

The main steps proposed in R. C. Myers, M. F. Paulos and
A. Sinha, JHEP 0906, 006 (2009) [arXiv:0903.2834 [hep-th]].
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The perturbative solution

The method for obtaining the perturbative solution Contd

© Considering the combination G} — f /gG[, where G,y
denotes the Einstein tensor, one finds a first-order linear
ODE for G(r), which is solvable.

@ Given G(r), the modified Maxwell equation is easily solved.

© With the above two perturbative solutions, F(r) can be
determined by solving the first-order linear ODE coming
from the rr-component of the Einstein equation.

Step 1 gives

fo(r)orG(r) =0, = a/G(r)=0, G(r)= const. (19)
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The perturbative solution

The explicit form of the perturbative solution

Without loss of generality
G(r)=0, = f(r)=g(r)="f()(Q+F(). (20
Step 2 leads to

hy | 2aplo  apofy  apoQ? | 20m10roQ?
H(r) = h — — . (21
() =ho+ r T 2r4 2r4 * 5r5 (21)

Step 3 gives

Yo aQ?rd aQ* 8aQ*
YO =t =¥ - 2200 2C BT (o)
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The perturbative solution

The explicit form of the perturbative solution Contd

Several constraints (following 0903.2834[hep-th])
@ r = rg is still the horizon.
aQ?  11aQ*

Y(rO):07 = y0:2—r0_ 10rg .

(23)

@ The charge density remains invariant. Thus the additional
terms in the modified Maxwell equation do not contribute
lim [V=0aL?(2Ry"Frt — 2R[Frt + 2R{Fy + RF)] = 0,
— 00

which leads to
h; = 0. (24)



The perturbative solution
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The perturbative solution

The explicit form of the perturbative solution Contd

@ The gauge potential A¢(r) vanishes at the horizon,

« 2 3
H(r) =0, = hg= fgﬁ - Sano. (25)
0
Thermodynamics:
The temperature
47 \/=QuQrr dr =710
1 _4Q% | 2aQ? 3Q2
= [(BM — —-) + 1-—)1 (26)
4L 2r2 2 re ry
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Thermodynamics

The chemical potential and the entropy density

The chemical potential

3

p=Ar = 00) = o — ao( — 7o 4) (27)
The entropy density given by Wald formula
s = —27‘1’$6 €cd = 27”5 2maQ” (28)
T T ORabeg T K22 T R20212°

Calculating other thermodynamic quantities: the background
subtraction method. Working in the grand canonical ensemble,
fixed chemical potential. The reference background: pure AdS,.
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Thermodynamics

The energy density and the charge density

The energy density
ol ol M 29Q* + 5Q%ry
op u B\ Ou 5 K L Sk2LArS

The charge density

1 <%) . 2Q 20(—29Q° + Q%rg)
P78 \on ), 9rrPl? T Bger2l2d(Q7 + 3rd)

(30)

Quantities characterizing the local stability: the specific heat C,,
and the electrical permittivity et .
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[efe] ]

Thermodynamics

The specific heat and the electrical permittivity

The specific heat
T <§> 47 (3rg — Q2?)
aT ), k2L2(Q2% + 3rg)
+a47rQ2(Q6 — 527Q% g +567Q?r8 + 135r3?)
5k2L2r2(Q? + 3rg)3

Cyu

(31)

The electrical permittivity
e = <@> _ 6r0(Q2 + rg’,‘)
T \on /s g2R2(Q2+3r3)
6(—39Q° + 247Q% + 11Q?r§ + 45r3?)
1092k2r3(Q? + 3rg)?

. (32)

+a

T>0-0Q%< 3r5‘. at leading order C,, > 0,e1 > 0, locally
stable. « corrections. numerical plots.
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The effective action approach

The definition of the DC conductivity

The Kubo formula

—

GR (w,K = 0) = —i / ddRe“0() ([0e(x), 3 (0)],  (33)

Ja-CFT current dual to the bulk gauge field A,.
The DC conductivity

—

opc = — lim —ImG)FfX( .k =0), (34)

w—0 W

One subtle point: since A; # 0, the perturbation A can couple
to the metric perturbations hy;.
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The effective action approach

The strategy

Strategy: Gauge invariance imposes a relation between the two
sets of perturbations which we use to integrate out the h,; and
obtain an action that involves only the A4 fluctuation.
Introducing a new radial coordinate u = ro/r, horizon u = uo,
the fluctuations of metric components and gauge field

3 o
T

3 ) )
T
3 S

A= %ak(u)e—'““'ky, (35)
s



DC conductivity
[e]e] lele]e]

The effective action approach

The approach

The simplest method: considering the quadratic effective action
(R. C. Myers, M. F. Paulos and A. Sinha, [arXiv:0903.2834

[hep-th]])

@ 1 d3k
1§ —ﬁ/ Rt (NWaE L+ MUaa-r).  (36)

where we have eliminated the contributions from t (u) by using
the corresponding Einstein equation and imposing h,* = 0.
The equation of motion

Qu(u) = M(U)ax(v) @7)

where
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The effective action approach

The approach Cont'd

o a® ,

Requiring regularity at the horizon (N. Igbal and H. Liu, Phys.
Rev. D 79, 025023 (2009) [arXiv:0809.3808 [hep-th]].)

jk(UO) = —jw lim N(U) Guu

Uu—Ug /{2 _gtt

a(u) +0wW?,  (39)

The flux factor
2Fk = jk(u)a_k(u), (40)
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The effective action approach

The approach Cont'd

According to (34), the conductivity is given by

2]:k :| . jk(u)a_k(u)
k=0

N u,laiunlol [m} k=0
(41)

1
o= lm —Im|————
u,w—0 W ak(u)a_k (U)

Note that

;—ulmﬂk(U)a—k(U)] = Im(fy (u)ay (u)a_ (u)+f2(u)jk (u)i—k (u)) =

(42)
as the two terms are real. Thus it is conserved and can be
evaluated at the horizon.
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OO0000®

The effective action approach

The approach Cont'd

Then the DC conductivity

06 = 5 KE o) o 3)
where
KZW) = ~N(u) /28 (W) = aan(u).  (44)

Note that A/(u) is real and independent of w up to O(w?). So it
is regular at the horizon and is sufficient to set w = 0 in the
equation of motion for ai.
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Our case

Our case

For our particular case,

2 rg 2 L2du2 r 2
ds =22 (u)dt= + 2 (U )+m(dx +dy?),  (45)
where
Q2u3
f(u) = (@ - WF(U)+aGU)l, F(u)=1+u+u?— =7,
0
2,3
G(u) = Q—u8[5r6‘(1+u+u2+u3)

10rg

—Q%(11 + 11u + 11u? + 11u® + 16u%)], (46)
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Our case

Our case Contd

Consider the leading order solution
f(u) =fo(u) = (1 —u)F(u), (47)

according to (34), it is sufficient to set k = 0.
The constraint for ty

L4u?
ty = 4g rgAtak’ (48)
Therefore
L4 2 4L4 2
N(U) = —2fo(u), M(u) = —p A2, (49)

9f rogZfo(u)  rogf
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Our case

Our case Contd

The solution for ay (u)

4Q?
ax(u) = aop(1 - Wu)a (50)
The DC conductivity
2 4 A2)2
roc = —— o —2) 5)

207 9(rd + Q2

which agrees with previous result (e.g. X. H. Ge, K. Jo and
S. J. Sin, [arXiv:1012.2515 [hep-th]].).
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Our case

Our case Contd

Including corrections: the steps are more or less the same, but
the equation becomes more complicated. Keeping the solution
to first order of « and Q?2,
1 4
ax(u) = ap + a1u + af(az — 2a;)u — Zalu
1 Q2u4 4a9Q?
—(za0 + al) , a1=——F——, (52)

30T 2T 3(d + Q?)

ap-integration constant. The conductivity

2 3 2\2 8_4 2
Rl e Pt ST




DC conductivity
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Our case

Our case Contd

In the limit of Q = 0,

2

L
opCc — ﬁ(l + 2aa2), (54)
K2g2

one can reproduce the result in arXiv: 1010.0443[hep-th] by
suitably choosing ay.
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Shear viscosity

The definition

The retarded Green'’s function
(K = 0) = =i [ dide't0(t)([Tuy (). T O, (65)
The shear viscosity is given by

n=— lim 1imer (w,K = 0), (56)

w—0 w Xy Xy

One can still apply the effective action approach.



Shear viscosity, thermal conductivity and relevant ratios
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Shear viscosity

The approach

Consider the metric perturbation

3 )
n(tu) = [ %qb(u)e—'wt, (57)

and expand the action to quadratic order in ¢,

1 d3k " I /
@ = ﬁ/(z S AUIA)"6 + BU)S'S + C()o'o

D(u)p¢ + E(u)¢"¢" + F¢"¢' + Kenl, (58)

Ken-contributions from the Gibbons-Hawking terms.
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Shear viscosity

The approach Cont'd

After making use of the equation of motion and integrating by

parts
72 _ i d3k o _F_/ /1 "o
0 = 5 [ GryEtlB - A= )00+ E@)
+(D - @)M + Ken. (59)

The canonical momentum is given by

5’[(2) /
(W)= 55 = 5l@ - A= 5) -~ (EWY]. (60
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Shear viscosity

The approach Cont'd

According to arXiv: 0809.3808[hep-th],

i ()
=M e (61)

In the low frequency limit 9,M(u) = 0, so we can evaluate IM(u)
at the horizon.. Imposing the regularity condition,

1= (K3 (o) + K (o)), ©2)

where

!/

) Juu F’ (4) < Ouu >/
KX (u) = A-B+—=), K /(u)=|E(u
Py =2 ). k) [() e

(63)



Shear viscosity, thermal conductivity and relevant ratios
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Shear viscosity

Our case

for our particular background, the nonvanishing functions in IN(;Z),

A() = 2rgfu) () = 3rdf(u)  aulQ?(u)
L4u2 - 2L4u? L4rg
erif(u)  2r3f(u)  4auQ?3f(u)
_ 9% 0 _
Clu) = LAud | LAuz N (64)
therefore
2 212
2 1o auQ _
which leads to ) X
r
1. 15 aQ (66)

=2tz T eg)



Shear viscosity, thermal conductivity and relevant ratios
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Thermal conductivity

Thermal conductivity

The thermal conductivity determines the response of the heat
flow to temperature gradients, TY, = —xk10,T.

The expression (D. T. Son and A. O. Starinets, JHEP 0603, 052
(2006), hep-th/0601157)

H 2
= (2 + 5yt 7

One can easily obtain k1 by substituting previous results into
this expression.
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Thermal conductivity

n/s and k1 p?/(1T)

One interesting ratio 7/s,

n 1 Q?
n_ E(l—i—aﬁ). (68)

When Q = 0, it reproduces the well-known bound 1/4x. It
might be violated in the presence of a chemical potential.
Another ratio

2 2
T -2 4a, — 10 _— 69
T T°OF + ar g [(4az )+ 15 rg, (69)

The bound in hep-th/0601157: 872 can also be violated.
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Summary

@ We consider RF? corrections to RN — AdS, black holes.
@ The perturbative solutions are calculated and the
thermodynamic properties are discussed.

@ The DC conductivity is obtained via the effective action
approach, which can reproduce the result in
1010.0443[hep-th] in certain limit.

@ The shear viscosity and the thermal conductivity are
evaluated.

@ Two interesting ratios /s and x1 2 /(nT) are obtained.
The corresponding bounds can be violated.
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Discussion

@ Hydrodynamic quantities in extremal background,
M. F. Paulos, arXiv:0910.4602[hep-th]. In particular,
g ~ wz.

@ The full correlation functions in the presence of RF?2

corrections.
@ Holographic optics(1006.5714[hep-th]).
I
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Thank you!
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