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Gauge/gravity duality and condensed matter physics

What is Gauge/gravity duality?

A holographic duality between a weakly-coupled theory of
gravity in certain spacetime and a strongly-coupled field
theory living on the boundary of that spacetime.

A powerful new tool for investigating dynamics of
strongly-coupled field theories in the dual gravity side.

A new window on understanding real-world physics: QCD,
CMT, etc.

Two complementary approaches: bottom-up and top-down.
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Gauge/gravity duality and condensed matter physics

Two complementary approaches:

Bottom-up

Toy-models coming from simple gravity theory;

Basic ingredients: gµν ,Aµ, ψ and/or dilaton φ;

Advantage(s): simplicity and universality;

Disadvantage(s): the dual field theory is unclear.

Top-down

Configurations originated from string/M theory;

Exact solutions of SUGRA or Dp/Dq-branes;

Advantage(s): good understanding on the field theory;

Disadvantage(s): complexity.
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A brief review of 1010.0443[hep-th]

The main results of 1010.0443[hep-th]

By R. C. Myers, S. Sachdev and A. Singh

Charge transport near 2+1-dim strongly interacting
quantum critical points;

Background: Schwarzschild -AdS4;

Effective action for Aµ

Ivec =
1
g2

4

∫

d4x
√−g[−1

4
FabF ab + γL2CabcdF abF cd ], (1)

The DC conductivity

σDC =
1
g2

4

(1 + 4γ). (2)
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A brief review of 1010.0443[hep-th]

An alternative form of the corrections

I′vec =
1
g̃2

4

∫

d4x
√−g[−1

4
FabF ab + αL2(Rabcd F abF cd

−4RabF acF b
c + RF abFab)], (3)

arising from KK reduction of 5D Gauss-Bonnet gravity.
In neutral background Rab = −3/L2gab, using the definition of
the Weyl tensor, the action (3) becomes

I′vec =
1 + 8α

g̃2
4

∫

d4x
√−g[−1

4
FabF ab +

α

1 + 8α
L2CabcdF abF cd ].

(4)
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A brief review of 1010.0443[hep-th]

An alternative form of the corrections Cont’d

It is equivalent to (1) with the following identifications

g2
4 =

g̃2
4

1 + 8α
, γ =

α

1 + 8α
. (5)

Thus the charge transport properties are identical. In particular,

σDC =
1 + 12α

g̃2
4

. (6)

QUESTION: How about the case with a non-vanishing
chemical potential?
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The set-up

The starting point

Leading order solution: RN-AdS4. The action

S0 =
1

2κ2

∫

d4x
√−g[R +

6
L2 − L2

g2
F

FabF ab]. (7)

The metric

ds2
0 =

r2

L2 [−f0(r)dt2 + dx2 + dy2] +
L2

r2

dr2

f0(r)
, (8)

where

f0(r) = 1 − M
r3 +

Q2

r4 , (9)
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The set-up

The starting point Cont’d

The gauge field

A(0)
t = µ0(1 − r0

r
). (10)

The horizon r0 satisfies f0(r0) = 0, ⇒ M = r3
0 + Q2/r0.

The chemical potential µ0, charge density ρ0, energy density ǫ0
and entropy density s0

µ0 =
gF Q
L2r0

, ρ0 =
2Q

κ2L2gF
,

ǫ0 =
M
κ2L4 , s0 =

2πr2
0

κ2L2 . (11)
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The set-up

The starting point Cont’d

The temperature

T0 =
3r0

4πL2 (1 − Q2

3r4
0

), (12)

The extremal limit

T0 = 0, ⇒ Q2 = 3r4
0 . (13)

One can verify that the first law of thermodynamics holds

dǫ0 = T0ds0 + µ0dρ0. (14)
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The set-up

The equations of motion

The full action including higher order corrections

S ≡ S0 + S1

=
1

2κ2

∫

d4x
√−g[R +

6
L2 − L2

g2
F

FabF ab

+
αL4

g2
F

(RabcdF abF cd − 4RabF acF b
c + RF abFab)].(15)

α-a dimensionless constant.
The modified Maxwell equation

∇a[F ab−αL2(Rab
cd F cd−2RacFc

b+2RbcFc
a+RF ab)] = 0. (16)
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The set-up

The equations of motion Cont’d

The Einstein equation

Rab − 1
2

Rgab =
3
L2 +

2L2

g2
F

FacFb
c − L2

2g2
F

gabF 2

+
αL4

g2
F

(
1
2

gabRcdef F
cdF ef − 2Radef Fb

d F ef − 2Rbdef Fa
d F ef

+2∇d∇f FdaFbf ) +
αL4

g2
F

(−2gabRcdF ceF d
e − 2∇d∇aFbf F

df

−2∇d∇bFaf F
df + 2�Faf Fb

f + 2gab∇c∇dF c
f F

df

+4RacFbf F
cf + 4RbcFaf F

cf + 2RcdF c
aF d

b + 2RcdF c
bF d

a)

+
αL4

g2
F

(
1
2

gabRF 2 − RabF 2 +∇a∇bF 2 + gab�F 2 + 2RFacFb
c).
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The perturbative solution

The method for obtaining the perturbative solution

The ansatz for the perturbative solution

ds2 =
r2

L2 [−f (r)dt2 + dx2 + dy2] +
L2

r2

dr2

g(r)
,

At(r) = A(0)
t (r) + H(r), (17)

where

f (r) = f0(r)(1 + F (r)), g(r) = f0(r)(1 + F (r) + G(r)), (18)

The main steps proposed in R. C. Myers, M. F. Paulos and
A. Sinha, JHEP 0906, 006 (2009) [arXiv:0903.2834 [hep-th]].
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The perturbative solution

The method for obtaining the perturbative solution Cont’d

1 Considering the combination Gt
t − f/gGr

r , where Gab

denotes the Einstein tensor, one finds a first-order linear
ODE for G(r), which is solvable.

2 Given G(r), the modified Maxwell equation is easily solved.
3 With the above two perturbative solutions, F (r) can be

determined by solving the first-order linear ODE coming
from the rr -component of the Einstein equation.

Step 1 gives

rf0(r)∂r G(r) = 0, ⇒ ∂r G(r) = 0, G(r) = const. (19)
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The perturbative solution

The explicit form of the perturbative solution

Without loss of generality

G(r) = 0, ⇒ f (r) = g(r) = f0(r)(1 + F (r)). (20)

Step 2 leads to

H(r) = h0 +
h1

r
+

2αµ0r0

r
− αµ0r4

0

2r4 − αµ0Q2

2r4 +
2αµ0r0Q2

5r5 . (21)

Step 3 gives

Y (r) ≡ f0(r)F (r) =
y0

r3 − αQ2r3
0

2r7 − αQ4

2r0r7 +
8αQ4

5r8 . (22)
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The perturbative solution

The explicit form of the perturbative solution Cont’d

Several constraints (following 0903.2834[hep-th])

r = r0 is still the horizon.

Y (r0) = 0, ⇒ y0 =
αQ2

2r0
− 11αQ4

10r5
0

. (23)

The charge density remains invariant. Thus the additional
terms in the modified Maxwell equation do not contribute

lim
r→∞

[
√−gαL2(2Rrt

rtFrt − 2Rr
r Frt + 2Rt

t Ftr + RFrt)] = 0,

which leads to
h1 = 0. (24)
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The perturbative solution

The explicit form of the perturbative solution Cont’d

The gauge potential At(r) vanishes at the horizon,

H(r0) = 0, ⇒ h0 =
αµ0Q2

10r4
0

− 3
2
αµ0. (25)

Thermodynamics:
The temperature

T =
1

4π
1√−gttgrr

d
dr

gtt |r=r0

=
1

4πL2r2
0

[(3M − 4Q2

r3
0

) +
2αQ2

r3
0

(1 − 3Q2

r4
0

)]. (26)



Introduction The perturbative solution DC conductivity Shear viscosity, thermal conductivity and relevant ratios Summary and discussion

Thermodynamics

The chemical potential and the entropy density

The chemical potential

µ = At(r → ∞) = µ0 − αµ0(
3
2
− Q2

10r4
0

). (27)

The entropy density given by Wald formula

s = −2π
∂L

∂Rabcd
ǫabǫcd =

2πr2
0

κ2L2 +
2παQ2

κ2L2r2
0

. (28)

Calculating other thermodynamic quantities: the background
subtraction method. Working in the grand canonical ensemble,
fixed chemical potential. The reference background: pure AdS4.
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Thermodynamics

The energy density and the charge density

The energy density

ǫ =

(

∂IE
∂β

)

µ

− µ

β

(

∂IE
∂µ

)

β

=
M
κ2L4 − α

29Q4 + 5Q2r4
0

5κ2L4r5
0

. (29)

The charge density

ρ = −1
β

(

∂IE
∂µ

)

β

=
2Q

gFκ2L2 +
2α(−29Q5 + Q3r4

0 )

5gFκ2L2r4
0 (Q

2 + 3r4
0 )
. (30)

Quantities characterizing the local stability: the specific heat Cµ

and the electrical permittivity ǫT .
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Thermodynamics

The specific heat and the electrical permittivity

The specific heat

Cµ = T
(

∂s
∂T

)

µ

4πr2
0 (3r4

0 − Q2)

κ2L2(Q2 + 3r4
0 )

+α
4πQ2(Q6 − 527Q4r4

0 + 567Q2r8
0 + 135r12

0 )

5κ2L2r2
0 (Q

2 + 3r4
0 )

3
.(31)

The electrical permittivity

ǫT =

(

∂Q
∂µ

)

T
=

6r0(Q2 + r4
0 )

g2
Fκ

2(Q2 + 3r4
0 )

+α
6(−39Q6 + 247Q4r4

0 + 11Q2r8
0 + 45r12

0 )

10g2
Fκ

2r3
0 (Q

2 + 3r4
0 )

2
. (32)

T > 0 → Q2 6 3r4
0 . at leading order Cµ > 0, ǫT > 0, locally

stable. α corrections. numerical plots.
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The effective action approach

The definition of the DC conductivity

The Kubo formula

GR
xx (ω,

~k = 0) = −i
∫

dtd~xeiωtθ(t)〈[Jx (x), Jx (0)], (33)

Ja-CFT current dual to the bulk gauge field Aa.
The DC conductivity

σDC = − lim
ω→0

1
ω

ImGR
xx (ω,

~k = 0), (34)

One subtle point: since At 6= 0, the perturbation Ax can couple
to the metric perturbations hxi .
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The effective action approach

The strategy

Strategy: Gauge invariance imposes a relation between the two
sets of perturbations which we use to integrate out the hxi and
obtain an action that involves only the Ax fluctuation.
Introducing a new radial coordinate u = r0/r , horizon u = u0,
the fluctuations of metric components and gauge field

ht
x =

∫

d3k
(2π)3 tk (u)e

−iωt+iky ,

hu
x =

∫

d3k
(2π)3 hk (u)e

−iωt+iky ,

Ax =

∫

d3k
(2π)3 ak (u)e

−iωt+iky , (35)
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The effective action approach

The approach

The simplest method: considering the quadratic effective action
(R. C. Myers, M. F. Paulos and A. Sinha, [arXiv:0903.2834
[hep-th]])

I(2)a =
1

2κ2

∫

d3k
(2π)3 du(N(u)a′

ka′

−k + M(u)aka−k), (36)

where we have eliminated the contributions from tk (u) by using
the corresponding Einstein equation and imposing hu

x = 0.
The equation of motion

∂u jk (u) =
1
κ2 M(u)ak (u), (37)

where
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The effective action approach

The approach Cont’d

jk (u) ≡
δI(2)a

δa′

−k
=

1
κ2 N(u)a′

k(u), (38)

Requiring regularity at the horizon (N. Iqbal and H. Liu, Phys.
Rev. D 79, 025023 (2009) [arXiv:0809.3808 [hep-th]].)

jk (u0) = −iω lim
u→u0

N(u)
κ2

√

guu

−gtt
ak(u) +O(ω2), (39)

The flux factor
2Fk = jk (u)a−k (u), (40)
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The effective action approach

The approach Cont’d

According to (34), the conductivity is given by

σ = lim
u,ω→0

1
ω

Im

[

2Fk

ak(u)a−k (u)

]

k=0
= lim

u,ω→0
Im

[

jk (u)a−k (u)
ωak(u)a−k (u)

]

k=0
,

(41)
Note that

d
du

Im[jk (u)a−k (u)] = Im(f1(u)ak (u)a−k (u)+f2(u)jk (u)j−k (u)) = 0,

(42)
as the two terms are real. Thus it is conserved and can be
evaluated at the horizon.
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The effective action approach

The approach Cont’d

Then the DC conductivity

σDC =
1
κ2 K 2

A(u0)
N (u0)

N (0)
|k=0, (43)

where

K 2
A(u) = −N(u)

√

guu

−gtt
, N (u) = ak(u)a−k (u), (44)

Note that N (u) is real and independent of ω up to O(ω2). So it
is regular at the horizon and is sufficient to set ω = 0 in the
equation of motion for ak .
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Our case

Our case

For our particular case,

ds2 = − r2
0

L2u2 f (u)dt2 +
L2du2

u2f (u)
+

r2
0

L2u2 (dx2 + dy2), (45)

where

f (u) = (1 − u)[F (u) + αG(u)], F (u) = 1 + u + u2 − Q2u3

r4
0

,

G(u) =
Q2u3

10r8
0

[5r4
0 (1 + u + u2 + u3)

−Q2(11 + 11u + 11u2 + 11u3 + 16u4)], (46)
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Our case

Our case Cont’d

Consider the leading order solution

f (u) = f0(u) = (1 − u)F (u), (47)

according to (34), it is sufficient to set k = 0.
The constraint for tk

t ′k = −4
L4u2

g2
F r2

0

A′

tak , (48)

Therefore

N(u) = − r0

g2
F

f0(u), M(u) =
L4ω2

r0g2
F f0(u)

− 4L4u2

r0g4
F

A′2
t , (49)
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Our case

Our case Cont’d

The solution for ak (u)

ak (u) = a0(1 − 4Q2

3(r4
0 + Q2)

u), (50)

The DC conductivity

σDC =
L2

κ2g2
F

(3r4
0 − Q2)2

9(r4
0 + Q2)2

, (51)

which agrees with previous result (e.g. X. H. Ge, K. Jo and
S. J. Sin, [arXiv:1012.2515 [hep-th]].).
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Our case

Our case Cont’d

Including corrections: the steps are more or less the same, but
the equation becomes more complicated. Keeping the solution
to first order of α and Q2,

ak (u) = a0 + a1u + α[(a2 − 2a1)u − 1
4

a1u4

−(
1
3

a0 +
1
4

a1)
Q2u4

r4
0

], a1 = − 4a0Q2

3(r4
0 + Q2)

, (52)

a2-integration constant. The conductivity

σDC =
L2

κ2g2
F

[
(3r4

0 − Q2)2

9(r4
0 + Q2)2

+ 2α(a2 +
8 − 4a2

3
Q2

r4
0

)], (53)
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Our case

Our case Cont’d

In the limit of Q = 0,

σDC =
L2

κ2g2
F

(1 + 2αa2), (54)

one can reproduce the result in arXiv: 1010.0443[hep-th] by
suitably choosing a2.
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Shear viscosity

The definition

The retarded Green’s function

GR
xy ,xy (ω,

~k = 0) = −i
∫

dtd~xeiωtθ(t)〈[Txy (x),Txy (0)]〉, (55)

The shear viscosity is given by

η = − lim
ω→0

1
ω

ImGR
xy ,xy(ω,

~k = 0), (56)

One can still apply the effective action approach.
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Shear viscosity

The approach

Consider the metric perturbation

hx
y (t ,u) =

∫

d3k
(2π)3φ(u)e

−iωt , (57)

and expand the action to quadratic order in φ,

I(2)φ =
1

2κ2

∫

d3k
(2π)3 du[A(u)φ′′φ+ B(u)φ′φ′ + C(u)φ′φ

+D(u)φφ+ E(u)φ′′φ′′ + Fφ′′φ′ + KGH], (58)

KGH-contributions from the Gibbons-Hawking terms.
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Shear viscosity

The approach Cont’d

After making use of the equation of motion and integrating by
parts

Ĩ(2)φ =
1

2κ2

∫

d3k
(2π)3 du[(B − A − F ′

2
)φ′φ′ + E(u)φ′′φ′′

+(D − (C − A′)′

2
)φφ] + K̃GH. (59)

The canonical momentum is given by

Π(u) ≡
δĨ(2)φ

δφ′
=

1
κ2 [(B − A − F ′

2
)− (E(u)φ′′)′]. (60)
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Shear viscosity

The approach Cont’d

According to arXiv: 0809.3808[hep-th],

η = lim
u,ω→0

Π(u)
iωφ(u)

. (61)

In the low frequency limit ∂uΠ(u) = 0, so we can evaluate Π(u)
at the horizon.. Imposing the regularity condition,

η =
1
κ2 (K

2
φ (u0) + K 4

φ (u0)), (62)

where

K (2)
φ (u) =

√

guu

−gtt
(A−B +

F ′

2
), K (4)

φ (u) =

[

E(u)
(√

guu

−gtt

)′
]

′

.

(63)
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Shear viscosity

Our case

for our particular background, the nonvanishing functions in Ĩ(2)φ ,

A(u) =
2r4

0 f(u)

L4u2 , B(u) =
3r3

0 f (u)
2L4u2 − αu2Q2f (u)

L4r0
,

C(u) = −6r3
0 f (u)

L4u3 +
2r3

0 f (u)′

L4u2 − 4αuQ2f (u)
L4r0

, (64)

therefore

K 2
φ (u) =

r2
0

2u2L2 +
αu2Q2

L2r2
0

, K 4
φ (u) = 0, (65)

which leads to

η =
1
κ2 (

r2
0

2L2 +
αQ2

L2r2
0

). (66)
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Thermal conductivity

Thermal conductivity

The thermal conductivity determines the response of the heat
flow to temperature gradients, T t

i = −κT∂iT .
The expression (D. T. Son and A. O. Starinets, JHEP 0603, 052
(2006), hep-th/0601157)

κT = (
s
ρ
+
µ

T
)2Tσ, (67)

One can easily obtain κT by substituting previous results into
this expression.



Introduction The perturbative solution DC conductivity Shear viscosity, thermal conductivity and relevant ratios Summary and discussion

Thermal conductivity

η/s and κTµ
2/(ηT )

One interesting ratio η/s,

η

s
=

1
4π

(1 + α
Q2

r4
0

). (68)

When Q = 0, it reproduces the well-known bound 1/4π. It
might be violated in the presence of a chemical potential.
Another ratio

κTµ
2

ηT
= 2π2g2

F + απ2g2
F [(4a2 − 10) +

422 + 80a2

15
Q2

r4
0

], (69)

The bound in hep-th/0601157: 8π2 can also be violated.
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Summary

We consider RF 2 corrections to RN − AdS4 black holes.

The perturbative solutions are calculated and the
thermodynamic properties are discussed.

The DC conductivity is obtained via the effective action
approach, which can reproduce the result in
1010.0443[hep-th] in certain limit.

The shear viscosity and the thermal conductivity are
evaluated.

Two interesting ratios η/s and κTµ
2/(ηT ) are obtained.

The corresponding bounds can be violated.
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Discussion

Hydrodynamic quantities in extremal background,
M. F. Paulos, arXiv:0910.4602[hep-th]. In particular,
σ ∼ ω2.

The full correlation functions in the presence of RF 2

corrections.

Holographic optics(1006.5714[hep-th]).

· · ·
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Thank you!
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