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QED theta angle

θ
4

FµνF̃µν =
θ
8

FµνFρσεµνρσ = −θE · B .

Does this term have physical consequences?

No topology, total derivative.

Kµ = 1/4 εµαβγFαβAγ

∂µKµ = 1/4 FF̃ = −E · B∫
d4x E · B =

∫
d3x K0(A f ) −

∫
d3x K0(Ai)



QED theta angle

No effect on equations of motion.

No effect on Feynman diagrams (perturbation theory)

Perhaps effects are exponentially small? exp (−1/α) ?

But what about strong fields? Or subtle effects like quantum
phases?

IF theta term has physical consequences, then θ is an
unmeasured parameter of the standard model!



Gedanken experiment

Two identical wave packets of light
are sent along upper and lower
paths of the same length. The
upper packet is exposed to a
background electromagnetic field
depicted by the shaded circle. This
background field is chosen so that
E · B is non-zero in the interaction
region. Interference between the
recombined packets depends on
the parameter θ.

Relative phase:

−θ

∫
d4x E · B ≡ θΦ ,



Gedanken experiment

Example: wavepackets produced
by beam splitter; B field normal to
plane of diagram. In shaded
region, have E field normal to
plane of diagram. Outside of
shaded region E · B = 0.

Relative phase:

−θ

∫
d4x E · B ≡ θΦ ,



Gedanken experiment

upper path lower path

A(i→ f ) = Aupper(i→ f ) +Alower(i→ f )



Path integral

A(i→ f ) = Aupper(i→ f ) +Alower(i→ f ) .

Each ofAupper/lower can be expressed as a path integral:

A =

∫
dAi dA f

∫ A f

Ai

DA exp
(
−i

∫
d4x

1
4

F2 + θE · B
)
Ψ∗[Ai]Ψ[A f ]

1. i, f denote initial and final times

2. wavefunction factorsΨ are the overlap between eigenstates
of the field operator Âµ(x) and physical state |Ψ〉: Ψ[A] = 〈A|Ψ〉

3. Paths differ in value of Φ.



Path integral: semi-classical approximation

Expand about solution to classical equation of motion
(Maxwell’s equations):

A(x) = Ā(x) + δA(x) ,

where Ā = Abkgnd + Āpacket

1. Along upper path, obtain extra phase:

Aupper ≈ Alower eiθΦ

2. Action still quadratic, even with theta term – can do
fluctuation integral exactly.

S[A] = S[Ā] + δS[A]/δA|Ā δA + δ2S[A]/δA2
|Ā (δA)2



Path integral: beyond semi-classical approximation

Phase factor is exact: Aupper = Alower eiθΦ

S[A] = S[Ā] + δS[A]/δA|Ā δA + δ2S[A]/δA2
|Ā (δA)2

1. First term contains phase factor.

2. Second term vanishes on solution to equations of motion.
Also, independent of θ. * Same for upper and lower paths.

3. Third term (fluctuation kernel) independent of θ. * Same
for upper and lower paths.

* Theta term a total derivative; write in terms of boundary
integrals

∫
d3x K0(A), so no effect on δ/δA(x).



Gauge symmetry and redundant description

∫
d4x E · B =

∫
d3x K0(A f ) −

∫
d3x K0(Ai)

1. If
∫

d4x E · B is different for two trajectories (upper, lower),
then the boundary conditions of the trajectories must be
different. Assume the difference is in A f .

2. Therefore, we are interfering two configurations with
different A f ’s, although they have same E and B fields (up to
reflection).

Upper and lower final states differ by a reflection and a gauge
transformation.



Gauge symmetry and redundant description

Classical EM: AU = A + iU†∂U and A are the same state. (Two
descriptions of the same thing.)

It’s possible that the corresponding quantum states differ by a
phase:

|AU
〉 = eiδ

|A〉 ,

where Â(x)|A〉 = A(x)|A〉; eigenstates of the field operator.
Could even have δ = δ(A,U)!

We assume |A〉 = |AU
〉 are the same physical state; this choice of

basis is required to define what is meant by θ.



Aharonov-Bohm effect

Vector potential causes shift in momentum operator

−i∂i → −i∂i + Ai .

Induces A-dependent phase into wavefunction. But no force or
modification of classical motion.

exp
(
i
∫

dx · A
)
ψ = exp

(
i
∫

dt
dx
dt
· A

)
ψ



Functional Schrodinger equation

Similar result in gauge field theory due to theta term.

Recall L = −F2/4 = 1/2
(
E2
− B2

)
. In A0 = 0 gauge E = −Ȧ, so

the conjugate momentum ∂L/∂Ȧ = Ȧ = −E. With no theta term
the functional Schrodinger equation is

1
2

(
(−iδ/δA(x))2 + B(x)2

)
Ψ[A] = i

∂
∂t
Ψ[A].

Theta term −θE · B = θ ȦB shifts the conjugate momentum by
θB(x). Momentum operator −iδ/δA(x) in the Schrodinger
equation becomes

− i
δ

δA(x)
+ θB(x) .



Functional Schrodinger equation

This causes the wave functionalΨ[A] to acquire a phase
(analogous to the Aharonov-Bohm phase) associated with
motion in the configuration space:

Ψθ[A] = exp
(
iθ

∫
d3x

A · B
2

)
Ψ[A] . (1)

IfΨ[A] is a soln to Schrodinger Eqn for θ = 0, thenΨθ[A] is
corresponding solution in presence of theta term. δ/δA(x) of the
integral in (1) yields −θB(x), which cancels the shift in
momentum operator.

Integrand 1
2 A · B is simply K0, where

Kµ = 1/4 εµαβγFαβAγ

∂µKµ = 1/4 FF̃ = −E · B



Functional Schrodinger equation

Fix the phase relative to some reference configuration A∗:

iθ
(∫

d3x K0(A) −
∫

d3x K0(A∗)
)
= −iθ

∫
d4x E · B

Where boundary conditions on spacetime integral are
A(ti, x) = A∗(x) and A(t f , x) = A(x).

Define this quantity to be the phase

iθΦ(A|A∗)

Note that Φ[A1|A3] = Φ[A1|A2] + Φ[A2|A3].



Functional Schrodinger equation

Now revisit gedanken experiment. Want to show that

Φ[A f ,upper|A f ,lower] = Φ[A f ,upper|Ai,upper]

Φ[A f ,upper|A f ,lower] = Φ[A f ,upper|Ai,upper] + Φ[Ai,upper|Ai,lower]

+ Φ[Ai,lower|A f ,lower]



Functional Schrodinger equation

1. Φ[Ai,upper|Ai,lower] is zero by assumption – the two initial
states are produced with no relative phase, e.g., by a perfect
beam splitter. (Also zero by interpolation, because E · B is
always zero; wave packet initial states are far from the
background field region.)

2. Φ[Ai,lower|A f ,lower] is zero because the interpolation between
the initial and final configurations on the lower trajectory have
E · B = 0 at all times.



Realistic configurations

Interference if:

Φ[Ai,lower|A f ,lower] , Φ[Ai,upper|A f ,upper]

For simplicity, we have assumed E · B non-zero on upper path,
zero on lower path. This may not be a realistic assumption.

Interference depends only on whether Φ is different along the
upper and lower paths.∫ t f

ti

d3x K0(A) =
∫ t f

ti

d3x
1
2

A · B



Realistic configurations

∫ t f

ti

d3x K0(A) =
∫ t f

ti

d3x
1
2

A · B

Let A = Ab + Ap (background, packet), then

A ·B = A · (∇×A) = Ap · (∇×Ap) + Ab · (∇×Ab) + (mixed terms)

Phase difference due to mixed terms:

Ap · Bb + Ab · Bp

One might expect that a generic source of background field
placed asymmetrically wrt axis of symmetry could produce
interference. (Might want time dependence.)



Non-Abelian generalization

Can repeat functional Schrodinger calculation for Non-Abelian
gauge theory. Obtain phase factor

iθΦ = i
θ
4

∫
d4x tr FF̃

Kµ = εµαβγtr
(
FαβAγ −

2
3

AαAβAγ

)
Note: for generic gauge configurations Ai(x) and A f (x) (i.e., not
necessarily vacuum configurations, nor related by a gauge
transformation) the topological charge is not quantized, but
rather takes on continuous values.



Remarks

1. Theta term can have a quantum mechanical effect on local
physics despite the fact that it is a total divergence and has no
effect on the classical equations of motion (cf. the
Aharonov-Bohm effect).

2. Although the spacetime integral of E · B over a region is fixed
by the values of the potential A on the boundary, the specific
arrangement of the density E · B within the region can lead to
observable consequences: relative phases for different photon
states.

3. Not so different from the case of the electric charge Q: the
total Q on a spacelike slice is fixed, but the distribution of
charge density has local consequences.



Remarks: baryogenesis?

1. These effects violate CP symmetry, so it is possible they may
have some relevance to the baryon asymmetry of the universe.

2. The SU(2) theta angle has no physical consequences, because
it can be canceled by appropriate chiral rotation of the left
handed fermions.

3. But electroweak baryon number violating processes (i.e.,
mediated by sphaleron-like configurations) typically involve
strong electromagnetic fields, so might be affected by the CP
violating QED theta angle.



Remarks: GUTs?

In grand unified theories such as SU(5) or SO(10), the theta
angles for each of the standard model gauge forces (i.e., SU(3),
SU(2), U(1)) are related by group theoretical factors.

Therefore, low energy measurements of these angles have
interesting implications for very high energy physics.



A new constant of Nature?

We thought we understood QED perfectly – no new mysteries.

Are there new quantum phases?

Who will be the first to measure this parameter of the Standard
Model?


