<u>Quasiparticle states in</u> <u>heavy nuclei</u>

- 1. Introduction
- 2. Parametrisation of nuclear shape with TCSM Comparison with other approaches
- 3. One- and two-quasiparticle states
- 4. Summary

G.Adamian, N.Antonenko, S.Kuklin, L.Malov, Collaboration with B.N.Lu, E.-G.Zhao, S.-G.Zhou, W.Scheid -Study of structure of heaviest nuclei to understand the mechanism of their formation in fusion reactions

-Identification of heavy nuclei by α -decay needs the analysis of isomer states

-Population of isomer states in reactions

-Search of shells and subshells closure

Parametrisation of nuclear shape with TCSM

$$H = T + V(\rho, z) + V_{LS} + V_{L^2}$$

$$H = T + V(\rho, z) + V_{LS} + V_{L^{2}}$$

$$\frac{1}{2}m\omega_{z}^{2}(z - z_{1})^{2} + \frac{1}{2}m\omega_{\rho}^{2}\rho^{2}, z < z_{1}$$

$$V(\rho, z) = \{ \frac{1}{2}m\omega_{\rho}^{2}\rho^{2}, z_{1} < z < z_{2}$$

$$\frac{1}{2}m\omega_{z}^{2}(z - z_{2})^{2} + \frac{1}{2}m\omega_{\rho}^{2}\rho^{2}, z > z_{2}$$

$$V_{LS} = -\frac{2\hbar\kappa_{i}}{m\omega_{0i}}(\nabla V \times \vec{p})\vec{s}$$

$$V_{L^{2}} = -\hbar\omega_{0i}\kappa_{i}\mu_{i}\hat{l}^{2} + \hbar\kappa_{i}\mu_{i}\omega_{0i}N_{1}(N_{1} + 3)/2\delta_{if}$$

$$V_{LS} = -\frac{2\hbar\kappa_i}{m\omega_{0i}} (\nabla V \times \vec{p})\vec{s}$$

$$V_{L^{2}} = -\hbar \omega_{0i} \kappa_{i} \mu_{i} \hat{l}^{2} + \hbar \kappa_{i} \mu_{i} \omega_{0i} N_{1} (N_{1} + 3) / 2 \delta_{if}$$

 $\omega_{0i} = 41 MeV / A_i^{1/3}$, $A_i = a_i b_i^2 / 1.22^3$, $\omega_\rho / \omega_z = a_i / b_i$, $z_2 - z_1 = 2R_0 \lambda - a_1 - a_2$

Comparison with other calculations

²⁴⁸Fm gs.: $\lambda = 1.18, \beta = 1.28 \rightarrow \beta_2 = 0.25, \beta_4 = 0.027$ P.Möller et al. $\beta_2 = 0.235$, $\beta_4 = 0.049$ For ^{247,248,249}Fm, the microscopic corrections are -3.85, -3.88, and -4.3 MeV. P.Möller et al.: -3.52, -3.57, and -3.97 MeV The values of Δ differ within 0.1 MeV.

- TCSM
- △ A. Sobiczewski et al.
- P. Möller et al.
- ♦ S. Goriely et al.

N=155

Potential energy

 $U(Z, A, \lambda, \beta) = U_{LDM}(Z, A, \lambda, \beta) + \delta U_{mic}(Z, A, \lambda, \beta)$

Binding energy

$$B(Z, A) = U(Z, A, \lambda_{gs}, \beta_{gs}) - a_{v}(1 - 1.78(\frac{N - Z}{A})^{2})A + ...$$
$$a_{v} = 15.83 MeV$$

 $Q_{\alpha} \text{ energy} \\ Q_{\alpha}(Z, A) = B(Z, A) + 28.296 - B(Z-2, A-4) \\ \text{Alpha decay half-lives } T_{\alpha} \text{ (A. Sobiczewski et al.)} \\ \log_{10} T_{\alpha}(Z, A) = 1.5372 Z Q_{\alpha}^{-1/2} - 0.1607 Z - 36.573 \\ \end{array}$

Strength parameters of paring interaction

$$G_n = (19.2 \pm 7.4 \frac{N-Z}{A}) A^{-1} MeV$$

 $A\!\approx\!250\!\rightarrow\!G_n\!\approx\!0.075\,MeV$, $G_p\!\approx\!0.085\,MeV$

One-quasiparticle excitations

$$E_{\mu} = \sqrt{(e_{\mu} - e_{F})^{2} + \Delta^{2}} - \sqrt{(e_{\mu}' - e_{F})^{2} + \Delta^{2}}$$

Two-quasiparticle excitations

$$E_{\mu} = \sqrt{(e_{\mu} - e_{F})^{2} + \Delta^{2}} + \sqrt{(e_{\mu}' - e_{F})^{2} + \Delta^{2}}$$

The smooth change of energies of almost all one-quasiparticle states in the isotone chain.

The deformation parameters of the *N*=149 nuclei treated are almost the same. Although different methods of calculations give various deformations of the ground state. For example, in the case of ²⁵¹No β_2 =0.234 and β_4 =0.057 are resulted from the TCSM, β_2 =0.296 and β_4 =0.01 from the HB with Sly4 parameterization.

Long-living isomer in 251 No: $1/2^+$ [631], about 1 s

N=151 isotones

TCSM

For the *N*=151 nuclei, all our calculations with different methods give the $1/2^+[620]$ states below the $5/2^+[622]$ states. The $7/2^+[624]$ state is expected below the $5/2^+[622]$ state. The $1/2^+[620]$ state goes down in heavier nuclei and could become the isomer state in ²⁵⁵Rf.

In the N=149 and 151 nuclei the $1/2^{+}[620]$ single-particle state is above and the $5/2^{+}[622]$ and $1/2^{+}[631]$ single-particle states are below the corresponding Fermi levels. These levels go down with deformation. If one adjusts in 251 No the $1/2^{+}$ [631] level closer to the Fermi level than the $5/2^{+}[622]$ level, then in ²⁵³No the $1/2^{+}[631]$ level would be below the $5/2^{+}[622]$ level as well. Thus, one can not simultaneously adjust the calculated one-quasiparticle states to the experimental assignments for ²⁵¹No and ²⁵³No. This statement is true if the deformations of these nuclei are close as follows from our calculations.

Rotational bands

The prediction of alternating parity bands at energy larger than 0.5 MeV.

N=153 isotones

The $7/2^{+}[613]$ state is expected to be the isomer at least for N=153nuclei up to ²⁵⁵No. In ²⁵⁷Rf and ²⁵⁹Sg the order of the 7/2⁺[613] and 9/2 [734] states changes and the 9/2 [734] state can become the isomer. In ²⁵⁷Rf the isomer state at 0.07 MeV has been found [EPJA 43, 175 (2010)] and tentatively assigned to the 11/2-[725] state. However, all our calculations result the 11/2 [725] state at energy larger then 0.3 MeV and with increasing Z there is no tendency for lowering the energy of this state below 0.1 MeV. The HB approach results the 11/2 [725] states at energies above 0.6 MeV.

Using the one-quasiparticle spectra calculated with the TCSM for 257 Rf and 253 No, the possible α decay scheme of 257 Rf is suggested. The calculated Q_{α} values are consistent with the experimental values listed.

N=155 isotones

TCSM

The change of the deformation in isotone chain destroys the smooth dependence of the one-quasiparticle energies on Z.

<u>Summary</u>

- The energies of almost all low-lying onequasiparticle states change rather smoothly in the isotone chains if there is no cross of the proton sub-shell, i.e. if the ground-state deformations of the isotones are close.
- The change of the deformation due to the proton shell effect (N=155 isotones) causes the rearrangement of the order of the one-quasiparticle states.

- The simultaneous good agreement of the calculated and experimental spectra for the N=149 and 151 nuclei can not be achieved without strong variation of the parameters.
- The calculations were performed with the TCSM and QPM which belong to the microscopic-macroscopic approach and with the self-consistent HB approach. All approaches qualitatively lead to the same conclusions.
- The used simple shape parametrization is suitable to describe some properties of heavy nuclei.

 $^{64}Ni + ^{207}Pb \rightarrow ^{270}Ds + 1n$ ground state: $E_{CN}^* \approx 14 \text{ MeV}$ 2qp isomer state: $E_{CN}^* \approx 14 - E_{u} \approx 12.8 \text{ MeV}$ $W_{sur}(isomer)/W_{sur}(gs) \approx 2$ For $E_{\mu} \approx 1.2$ MeV, the population of isomer state is $\approx \exp(-(E_u - E_{rot})/T) \approx 0.32$.

 $\sigma_{ER}(gs)/\sigma_{ER}(isomer) \approx 0.68:0.64$

exp.: ≈1:1

1qp isomer state:

After the CN is cooled down by the neutron emission till $E^* < 8$ MeV

 $p_{is} \approx exp(-E_{is}/T)/[1+exp(-E_{is}/T)]$

T \approx 0.6 MeV and p_{is}>0.35 in the reaction treated.

The population of isomer state is quite probable.

²⁴⁸**Fm** β_2 -solid lines, β_4 -dashed lines

²⁴⁸Fm

$$H = T + V(\rho, z) + V_{LS} + V_{L^2}$$

$$\frac{1}{2}m\omega_{z}^{2}(z-z_{1})^{2} + \frac{1}{2}m\omega_{\rho}^{2}\rho^{2}, z < z_{1}$$

$$V(\rho, z) = \{\frac{\varepsilon}{2}m\omega_{z}^{2}(z-z_{i})^{2}(1+c_{i}(z-z_{i})+d_{i}(z-z_{i})^{2}) + \frac{1}{2}m\omega_{\rho}^{2}\rho^{2}, z_{1} < z < z_{2}$$

$$\frac{1}{2}m\omega_{z}^{2}(z-z_{2})^{2} + \frac{1}{2}m\omega_{\rho}^{2}\rho^{2}, z > z_{2}$$

$$V_{LS} = -\frac{2\hbar\kappa_i}{m\omega_{0i}} (\nabla V \times \vec{p})\vec{s}$$

$$V_{L^{2}} = -\frac{\hbar \kappa_{i} \mu_{i}}{m^{2} \omega_{0i}^{3}} \hat{l}^{2} + \hbar \kappa_{i} \mu_{i} \omega_{0i} N_{1} (N_{1} + 3) / 2 \delta_{if}$$

 $\omega_{0i} = 41 MeV / A_i^{1/3}, A_i = a_i b_i^2 / 1.22^3, c_i = -2/z_i, d_i = -2/z_i^2, \omega_\rho / \omega_z = a_i / b_i, z_2 - z_1 = 2R_0 \lambda - a_1 - a_2$

Parameters $35 \le N - Z \le 56$ for neutrons $\kappa_n = -0.076 + 0.0058(N - Z) - 6.53 \times 10^{-5}(N - Z)^2 + 0.002 A^{1/3}$,

 $\mu_n = 1.598 - 0.0295(N-Z) + 3.036 \times 10^{-4}(N-Z)^2 - 0.095 A^{1/3}$,

for protons $\kappa_p = 0.0383 + 0.00137(N-Z) - 1.22 \times 10^{-5}(N-Z)^2 - 0.003 A^{1/3}$,

 $\mu_p = 0.335 + 0.01 (N-Z) - 9.367 \times 10^{-5} (N-Z)^2 + 0.003 A^{1/3}$, The parts in front of the terms with A^{1/3} vary: (0.05-0.053) for κ_n , (0.075-0.0768) for κ_p , (0.88-0.92) for μ_n , (0.58-0.61) for μ_p Strength parameters of paring interaction

$$G_n = (19.2 \pm 7.4 \frac{N-Z}{A}) A^{-1} MeV$$

 $A\!\approx\!250\!\rightarrow\!G_n\!\approx\!0.075\,MeV$, $G_p\!\approx\!0.085\,MeV$

One-quasiparticle excitations

$$E_{\mu} = \sqrt{(e_{\mu} - e_{F})^{2} + \Delta^{2}} - \sqrt{(e_{\mu}' - e_{F})^{2} + \Delta^{2}}$$

Two-quasiparticle excitations

$$E_{\mu} = \sqrt{(e_{\mu} - e_{F})^{2} + \Delta^{2}} + \sqrt{(e_{\mu}' - e_{F})^{2} + \Delta^{2}}$$

$\Delta \ge 0.35 MeV \rightarrow BCS$ approximation

