
Statistical Mechanics and

Error-Correction Codes.





Noise during the transmission

=> loss of information.

Shannon: to recover the information

introduce (deterministic) redundancy (“chan-

nel encoding”)

use this redundancy to infer the message sent

(“decoding”)

The algorithms which transform the source out-

puts to redundant messages are called error-

correcting codes. Instead of K bits, send N >

K bits.

R = K/N = the rate of the code









The mathematical theory of communication is

probabilistic in nature. Both the production of

information and its transmission are considered

as probabilistic events.

Message − > sequence of K bits

~σ = {σ1, · · · , σK}, σi = ±1

Assumption: All source words are equally prob-

able

If σ = ±1 is the input because of the noise,

the output will be a real number J, in general

different from σ.

The statistical properties of the transmission

channel are supposed to be known.

Noise during the transmission

=> loss of information.

Channel capacity C = the maximum informa-

tion/unit time which can be transmitted through

the channel.

The maximum is taken over all possible sources.



Shannon’s channel coding theorem 1948.

Consider a random code of rate R and length

N

Decoding as above with an appropriate choice

of the radius r

Pe the decoding error

If R < C, for any ǫ there exists a N0(ǫ) such

that for any N > N0(ǫ)

Pe < ǫ

error free communication if R < C and N very

large

Very antiintuitive result



A random code, i.e. random map allows error

free communication with probability one

What is then the problem ?

DECODING Computational cost of decod-

ing of random codes explodes with N

Choose a decodable code

All codes are good except the ones we know

how to decode

This has radically changed with

1993-1994 discovery of turbo codes by Berrou

and Glavieux

1997 rediscovery of Low Density Parity Check

Codes (LPDC)

Based on random constructions.

Heuristic decoding. Statistical Mechanics

very successful dealing with new codes



A detour via Statistical Mechanics

Ising model

H = −
∑

i,j Ji,jσiσj

Ferromagnetic couplings Ji,j = J > 0

Ground state σi = 1

Gauge transformation

σi → ǫiσi, Ji,j → Ji,jǫiǫj = J
′

i,j

Ground state of new Hamiltonian

H
′
= −

∑
i,j J

′

i,jσiσj

σ0
i = ǫi



Ising type model as Error-Correcting Codes

Let ǫi, i = 1, · · · , K the bits to transmit

sourceword

Let Cl
i,j, l = 1, · · · , N a connectivity matrix

Ex of L × L square lattice lattice: K = L2,

N = 2L2

We send over the channel the N bits

J
l,in
i,j = Cl

i,jǫiǫj codeword

R = K/N rate of the code

Decoding: find the ground state of

H = −
∑

l C
l
i,jJi,jσiσj



The output of the channel is J
l,out
i,j , l = 1, ·, N

In the absence of noise J
l,out
i,j = J

l,in
i,j

The ground state σ0
i = ǫi

Noise Suppose J
l,out
i,j = J

l,in
i,j + λ∆i,j

∆i,j zero mean independant Gaussian random

variables and variance one.





Error probability

If the noise is symmetric, because of gauge

invariance we can assume ǫi = 1

Error probability per bit

Pe = 1−m0

2 where m0 = 1
K

∑
i σ0

i

If we know how to compute the ground state

magnetisation we know the error probability of

the code



Consider a more general coding scheme

J l,in = Cl
ik1,···,ikl

ǫik1
, · · · , ǫikl

Decoding => find the ground state of

H
′
=

∑
l = Cl

ik1
,···,ikl

J l,outσik1
, · · · , σikl

Ising model with multispin interactions.

Again Pe = 1−m0

2

Like Monsieur Jourdain in Molière’s Bourgeois

Gentillhome

Monsieur Jourdain discovered he was using prose

without knowing it



Linear Codes

Coding

~u = G ~a

~u length N codeword

~a length K sourceword

G N × K matrix with elements zero or one

G is the generator matrix

ui =
∑

j gijaj modulo 2 addition

Jk = Ck
ikl1

,···,iklk

σ
ikl1

, · · · , σ
iklk

u’s are not independent but obey constrains
∑

j Hijuj = 0 modulo 2, Hij are zero or one

H parity check matrix

Mk
ikl1

,···,iklk

J
ikl1

, · · · , J
iklk

= 1

A linear code is given either in terms of the G

or H



Relation with Statistical Mechanics

Decoding: a Statistical inference problem

We know the statistical properties of the chan-

nel noise.

Transition probability Q( ~Jout| ~J in)

We know the code and the channel output ~Jout

We can assign a probability P code( ~J | ~Jout) to

any codeword ~J that it was sent

Similarly P source(~σ| ~Jout) to any sourceword ~σ

Suppose memoryless channel

Q( ~Jout| ~J in) =
∏

i q(Jout
i |J in

i )



Bayes theorem. Case of a single bit What is

the probability of J when the channel output

is Jout ?

p(J |Jout) = q(Jout|J)/(q(Jout|1) + q(Jout| − 1))

As J = ±1, a simple calculation gives

log p(J |Jout) = const. + hJ, where

h =
1

2
log(

q(Jout|1)

q(Jout| − 1)
)

Hamiltonian of spin in an external magnetic

field h

P code( ~J | ~Jout) =

exp (
∑

i

hiJi)
∏

k

δ(Mk
ikl1

,···,iklk

J
ikl1

, · · · , J
iklk

,1)



Replacing the delta function by a soft con-

straint

logP code( ~J | ~Jout) =

∑

i

hiJi + U
∑

k

Mk
ikl1

,···,iklk

J
ikl1

, · · · , J
iklk

Hamiltonian with ferromagnetic multispin cou-

plings in a random external field

Constrains provide the ferromagnetic couplings,

the channel output the external field.

Writing the code letters J in terms of the source

letters σ

logP source(~σ| ~Jout) =
∑

k

hkCk
ikl1

,···,iklk

σ
ikl1

, · · · , σ
iklk

Spin glass Hamiltonian with multispin couplings



Exactly what I proposed earlier

Nature of the couplings determined by the code.

Coupling strength by the channel output

Most probable sequence ~J or ~σ

=> ground state of the corresponding Hamil-

tonian



Reminder Pe = 1−m0

2

Magnetisation self-averaging

We can compute the error probability of a code

as a function of signal to noise by computing

the magnetisation of the corresponding spin

system.

Methods of Statistical Mechanics of disordered

systems.



Example: R= 1/2 convolutional codes

J
(1)
i = σiσi−1σi−2, J

(2)
i = σiσi−2

Constraints

J
(1)
k J

(1)
k+1J

(2)
k J

(2)
k+1J

(2)
k+2 = 1

−H =
1

w2

∑

k

J
1,out
k τkτk−1τk−2 + J

2,out
k τkτk−2

I assumed a Gaussian noise. In that case

hk = Jout
k /w2, w2 is the variance of the noise.

one dimensional spin glass Hamiltonian.

ground state => T = 0 transfer matrix algo-

rithm.

This is the Viterbi algorithm in coding theory

(1967)



Convolutional codes One dimensional spin sys-

tems with finite range interactions

Complexity of decodindg exponential in the

range of the interactions

Zero error probabilty above a certain signal

threshold as in Shannon theorem requires a

phase transition.

No phase transitions for one dimensional spin

systems with short range interactions.

Impossible to reach zero error probability with

convolutional codes



Statistical Mechanics of

Capacity Approaching Codes

LPDC : Kabashima Kanter and Saad, Monta-

nari

Turbo Codes: Montanari and N.S.

LPDC and Turbo Codes are linear Codes

Phase diagramme studied by the replica method

In both cases there is a Phase Transition

In coding language there is a signal to noise

s/n threshold Θ such that for

s/n > Θ Pe = 0





Calculation of Θ does not

depend on the decoding algorithm

Assumes that thermal equilibrium was reached



Decoding

Low Density Parity Check Codes (LPDC):

Gallager 1962

LPDC defined through the Parity Check

matrix H H~u = 0 modulo 2

H is a sparse random K × N matrix

Each column of H has l elements equal to one

and all other elements equal to zero. Each row

has m non zero elements. The rate of the code

is R = 1 − m/l

They correspond to ferromagnetic spin mod-

els with l-spin infinite strength interactions on

a random sparse graph in a random external

magnetic field



Gallager proposed an approximate iterative

decoding algorithm Equivalent to computing

the local magnetisations by iterating the

Thouless Anderson Palmer (TAP) or cavity

equations of spin-glasses

It is hoped that this procedure will converge

to a fixed point after a reasonable number of

iterations.

The number of iterations will depend on the

amount of noise. If the noise is too strong

there will be no convergence.

This algorithm, would be exact in a graph with-

out loops.

It is approximate because of the presence of

loops on a random graph.



The same algorithm was rediscovered recently

in computer science, where it is called belief

propagation

Big similarity with the physics of glasses

At low temperature thermal equilibrium is not

reached Aging phenomena

The same behaviour is expected for the

decoding algorithm.

In the particular case of the erasure channel

it was proven by Montanari Richardson and Ur-

banke

that there is another threshold θ < Θ

For s/n < θ the algoritm does not find the op-

timal solution. Very new phenomenon in com-

munication theory



What about finite size effects ?





There is finite size scaling

P(
s

n
, N) = f(z), z = N1/ν(

s

n
− cN−2/3)
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The block error probability for a (6,3) regu-

lar Gallager code for several block lengths (see

the legend). On the right the scaling plot (see

text) for the same quantity.



Observed numerically in the gaussian channel

proved mathematically by Montanari Richard-

son

and Urbanke for the erasure channel

Surprising result

finite size scaling is known for static phase

transitions

This is NOT a static but a dynamic

phase transition

Finite size scaling completely unexpected by

information theorists

IMPORTANT PRACTICAL APPLICATIONS


