Statistical Mechanics and
Error-Correction Codes.
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Noise during the transmission

=> loss of information.

Shannon: to recover the information
introduce (deterministic) redundancy (‘““chan-
nel encoding”)

use this redundancy to infer the message sent
( “decoding”)

The algorithms which transform the source out-
puts to redundant messages are called error-
correcting codes. Instead of K bits, send N >
K bits.

R = K/N = the rate of the code
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The mathematical theory of communication is
probabilistic in nature. Both the production of
information and its transmission are considered
as probabilistic events.

Message — > sequence of K bits

d={o1, -,0}, 0= =1

Assumption: All source words are equally prob-
able

If ¢ = +£1 is the input because of the noise,
the output will be a real number J, in general
different from o.

The statistical properties of the transmission
channel are supposed to be known.

Noise during the transmission

=> |loss of information.

Channel capacity C = the maximum informa-
tion/unit time which can be transmitted through
the channel.

The maximum is taken over all possible sources.



Shannon’s channel coding theorem 1948.
Consider a random code of rate R and length
N

Decoding as above with an appropriate choice
of the radius r

P, the decoding error

If R < C, for any e there exists a Np(e) such
that for any N > Ng(e)

?e<€

error free communication if R < C and N very
large
Very antiintuitive result



A random code, i.e. random map allows error
free communication with probability one
What is then the problem 7

DECODING Computational cost of decod-
ing of random codes explodes with N
Choose a decodable code

All codes are good except the ones we know
how to decode

T his has radically changed with
1993-1994 discovery of turbo codes by Berrou
and Glavieux

1997 rediscovery of Low Density Parity Check
Codes (LPDCQ)
Based on random constructions.
Heuristic decoding. Statistical Mechanics
very successful dealing with new codes



A detour via Statistical Mechanics
Ising model

— 2§ Ji,j0i0;
Ferromagnetlc couplings J; ; =J >0
Ground state g; = 1
Gauge transformation
o; — €04, Jij— J;ij€ie; = J;,j
Ground state of new Hamiltonian

— Sij i j0i0;
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Ising type model as Error-Correcting Codes

Let ¢, :=1,---, K the bits to transmit
sourceword

Let Clj, =1, ---,N a connectivity matrix

Ex of’L x I square lattice lattice: K = L2
N =2L72

We send over the channel the N bits

Jl,;’” = C} jeiej codeword

R = K/N rate of the code

Decoding: find the ground state of
H=-5,C;.J; 0,0



The output of the channel is Jl out 1 =1,. N

[,out Jl mn

In the absence of noise J i = Ji

The ground state a = €;

Noise Suppose Jl out _ = f;”—l— AA;

A; ; zero mean mdependar%t Gaussian random
variables and variance one.
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Error probability

If the noise is symmetric, because of gauge
invariance we can assume ¢; = 1

Error probability per bit

P, = 1_2m0 where m0 = %Zi 0?

If we know how to compute the ground state

magnetisation we know the error probability of
the code




Consider a more general coding scheme
[ain — L. e

J — Ciklf“aikle?’kl’ ’ezkl

Decoding => find the ground state of
I — [,out - ,

H =Yy =0 i J" i o

Ising model with multispin interactions.

Again P. = 1_2m0

Like Monsieur Jourdain in Moliere's Bourgeois
Gentillhome

Monsieur Jourdain discovered he was using prose
without knowing it



Linear Codes

Coding
u= G a

u length N codeword
a length K sourceword
G N x K matrix with elements zero or one
(G is the generator matrix
U; = Z] 9ija; modulo 2 addition

ngl’...,zé{k chl ka
u'S are not independent but obey constrains
>_j Hiju; = 0 modulo 2, H;; are zero or one
H parity check matrix
Mk T Je =1

Zéﬂ]-’...,fléﬂk 'léfl 'Lgck

A linear code is given either in terms of the G

or H



Relation with Statistical Mechanics

Decoding: a Statistical inference problem

We know the statistical properties of the chan-
nel noise.

Transition probability Q(Jout|.jin)

We know the code and the channel output Jout
We can assign a probability PCOde(ﬂJJUt) to
any codeword J that it was sent

Similarly PSOWCG(&Ugut) to any sourceword &
Suppose memoryless channel

Q(Jout| Jiny = T[; q(J2ut| Jim)



Bayes theorem. Case of a single bit What is
the probability of J when the channel output
is Jout ?

p(J|JoU) = q(J".T)/(q(J"|1) + q(JO%| — 1))
As J = +1, a simple calculation gives

log p(J|J°U) = const. + hJ, where

1 q(Jou1)
h= 51090 o =1y

Hamiltonian of spin in an external magnetic
field h

Pcode(j’l Jgut) —

ity Yyl 'k



Replacing the delta function by a soft con-
straint

log Pcode(j]Jo_’ut) —

Zhj + UZMk A SRR
1 ’lk l]_ lk

Hamiltonian with ferromagnetlc multispin cou-
plings in a random external field

Constrains provide the ferromagnetic couplings,
the channel output the external field.

Writing the code letters J in terms of the source

letters o

l0og Psource(O_|J0ut) = Z hka Lk Ok y Ok
ll lk l]_ lk

Spin glass Hamiltonian W|th multispin couplings



Exactly what I proposed earlier
Nature of the couplings determined by the code.
Coupling strength by the channel output
Most probable sequence J or &

—> ground state of the corresponding Hamil-

tonian



. .0
Reminder P, = 1 2"’”

Magnetisation self-averaging

We can compute the error probability of a code
as a function of signal to noise by computing
the magnetisation of the corresponding spin

system.
Methods of Statistical Mechanics of disordered

systems.




Example: R= 1/2 convolutional codes

1 2
JZ-( ) = 003102, JZ-( ) = 0032
Constraints

1) (1) (2) (2 (2
DR P B3P, =1

1 1,out 2,0ut
_Hzﬁzk:t]k Tka_lTk_Q‘l‘Jk TETE_2

I assumed a Gaussian noise. In that case

hy = J,g“t/wz, w? is the variance of the noise.
one dimensional spin glass Hamiltonian.
ground state => T = 0 transfer matrix algo-
rithm.

This is the Viterbi algorithm in coding theory
(1967)



Convolutional codes One dimensional spin sys-
tems with finite range interactions
Complexity of decodindg exponential in the
range of the interactions

Zero error probabilty above a certain signal
threshold as in Shannon theorem requires a
phase transition.

NOo phase transitions for one dimensional spin
systems with short range interactions.
Impossible to reach zero error probability with
convolutional codes



Statistical Mechanics of
Capacity Approaching Codes

LPDC : Kabashima Kanter and Saad, Monta-
nari

Turbo Codes: Montanari and N.S.

LPDC and Turbo Codes are linear Codes
Phase diagramme studied by the replica method
In both cases there is a Phase Transition

In coding language there is a signal to noise
s/n threshold © such that for

S/n>@ Pe:O






Calculation of © does not
depend on the decoding algorithm

Assumes that thermal equilibrium was reached



Decoding

Low Density Parity Check Codes (LPDC):
Gallager 1962

LPDC defined through the Parity Check
matrix H Hu = 0 modulo 2

H is a sparse random K x N matrix

Each column of H has [ elements equal to one
and all other elements equal to zero. Each row
has m non zero elements. The rate of the code
s R=1—m/l

They correspond to ferromagnetic spin mod-
els with [-spin infinite strength interactions on
a random sparse graph in a random external
magnetic field



Gallager proposed an approximate iterative
decoding algorithm Equivalent to computing
the local magnetisations by iterating the
Thouless Anderson Palmer (TAP) or cavity
equations of spin-glasses

It is hoped that this procedure will converge
to a fixed point after a reasonable number of
iterations.

The number of iterations will depend on the
amount of noise. If the noise is too strong
there will be no convergence.

This algorithm, would be exact in a graph with-
out loops.

It is approximate because of the presence of
loops on a random graph.



The same algorithm was rediscovered recently
in computer science, where it is called belief
propagation

Big similarity with the physics of glasses

At low temperature thermal equilibrium is not
reached Aging phenomena

The same behaviour is expected for the
decoding algorithm.

In the particular case of the erasure channel
It was proven by Montanari Richardson and Ur-
banke

that there is another threshold 6 < ©

For s/n < 6 the algoritm does not find the op-
timal solution. Very new phenomenon in com-
munication theory



What about finite size effects 7
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There is finite size scaling

PCN)=f(2), z=NY(C —eN2/%)
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The block error probability for a (6,3) regu-
lar Gallager code for several block lengths (see
the legend). On the right the scaling plot (see
text) for the same quantity.



Observed numerically in the gaussian channel
proved mathematically by Montanari Richard-
son

and Urbanke for the erasure channel
Surprising result

finite size scaling is known for static phase
transitions

This is NOT a static but a dynamic

phase transition

Finite size scaling completely unexpected by
information theorists

IMPORTANT PRACTICAL APPLICATIONS



