Decaying Dark Matter in SUSY SU(5) models

Mingxing Luo, Liucheng Wang and Guohuai Zhu

Zhejiang Institute of Modern Physics Physics Department, Zhejiang University

arXiv:0911.3235 Mar. 19, 2010

. Beijing

- Motivation
- SUSY SU(5) effective operators
- Phenomenologies
- Summary

 \bullet Pamela observation on $\frac{e^+}{e^-+e^+}$ and \bar{p}/p

• Attic measurement on total $e^+ + e^-$ flux

• Fermi-LAT and HESS measurements on total $e^+ + e^-$ flux

These excesses could be due to

- Unidentified astrophysical sources, e.g. nearby pulsars
- More exciting possibility: dark matter annihilation/decay

To determine the origin

- e^- and e^+ spectra with higher precision don't help much
- Gamma ray signals: the energy spectrum and its angular distribution
- Neutrino telescope: SuperK, IceCube DeepCore,...
- LHC, CDMS, Xenon,...

Dark matter (DM) Interpretation

- $m_{DM} \sim 1$ TeV or even heavier (Fermi-LAT and HESS)
- Neutralino LSP unlikely (Pamela \bar{p}/p)

For DM Annihilation

- Non-thermal production of DM
- A large boost factor $\sim 10^2-10^3$ required
 - Astrophysical boost unlikely to be large enough
 - Nonperturbative Sommerfeld or Breit-Wigner enhancement
 - stringent constraints from gamma ray measurements

For DM Decay

For DM decays via GUT-suppressed dim-6 operators

$$\tau \sim 8\pi \frac{M_{GUT}^4}{m_{DM}^5} = 3 \times 10^{27} s \left(\frac{\text{TeV}}{m_{DM}}\right)^5 \left(\frac{M_{GUT}}{2 \times 10^{16} \text{GeV}}\right)^4$$

This lifetime is being probed by Pamela, Fermi, ...

• The experiment acceptances of

 $\sim (1m^2)(1yr)(1sr) \simeq 3 \times 10^{11} cm^2 s~sr$

- The incident particles from decaying DM $\sim \int^{10 \text{kpc}} \frac{d^3 r}{r^2} \frac{0.3 \text{GeV cm}^{-3}}{m_{DM}} 10^{-27} \text{s}^{-1} \simeq 10^{-9} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
- $\mathcal{O}(100)$ events per year

References: Phys. Rev. D79 (2009) 105022; Phys. Rev. D80 (2009) 055011 SUSY SU(5) models

DM candidate in Minimal SUSY SU(5): LSP

- R-parity conservation: absolute stable
- R-parity violation: typically $m_{LSP} \sim \mathcal{O}(100 \text{ GeV})$, too light

Minimal extension: SU(5) singlet S as DM candidate

- Gauge coupling unification intact
- if R-parity conserved, LSP could be (minor) part of DM
- Z₂ symmetry: S is odd, others are even, to suppress dim-5 operators

Effective operators

All possible dim-6 operators

- Superfields: $S(y) = \tilde{s}(y) + \sqrt{2}\theta s(y) + \theta^2 F_s(y)$
- W_{α} : SUSY field strengths of SM gauge fields
- $H_{u,d}$: SUSY chiral fields for Higgs

$$\overline{\mathbf{5}}^T = (d^c, d^c, d^c, e, -\nu)_L$$

$$10 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u^c & -u^c & u & d \\ -u^c & 0 & u^c & u & d \\ u^c & -u^c & 0 & u & d \\ -u & -u & -u & 0 & e^c \\ -d & -d & -d & -e^c & 0 \end{pmatrix}_L$$

Effective operators-2

 $S^+SH^+_{u(d)}H_{u(d)}$, $S^+SW_{\alpha}W^{\alpha}$ should be suppressed:

- Significant number of quarks in final states, constrained by Pamela \bar{p}/p measurement
- mono-energetic gamma ray lines

For $S^+S\overline{5}^+\overline{5}$, $S^+STr(10^+10)$

• Assuming the vev $\langle \tilde{s} \rangle \sim 1 \text{TeV}$, Z_2 symmetry is spontaneously broken and both components (\tilde{s},s) in S can decay

Operators in component fields

$$\sum_{\Phi} \frac{1}{M_{GUT}^2} \left(i < \widetilde{s} > \widetilde{s}^* (\partial_{\mu} \psi \sigma^{\mu} \overline{\psi}) + i < \widetilde{s} > \widetilde{\psi}^* (\partial_{\mu} \psi \sigma^{\mu} \overline{s}) - < \widetilde{s} > \widetilde{s}^* \widetilde{\psi}^* \Box \widetilde{\psi} \right) + h.c. + \dots$$

... denotes the terms which can be dropped

- Total divergence terms
- Operators from F terms
 - suppressed by the leptonic Yukawa coupling constant
 - leading to many body decays which are further suppressed by phase spaces

Operators in component fields-2

 \widetilde{s} decays dominantly via $\widetilde{s}^*\widetilde{\psi}^*\Box\widetilde{\psi}$

- For $\widetilde{s}^*(\partial_\mu\psi\sigma^\muar{\psi})$, $\Gamma\propto m_\psi^2$
 - dominant decay channel is $\widetilde{s} \to t \overline{t}$
 - suppressed by m_t^2/m_s^2
- For $\widetilde{\psi}^*(\partial_\mu\psi\sigma^\mu\overline{s})$, $\Gamma\propto m_\psi^2$
 - dominant decay channel is $s \to \tau \widetilde{\tau}$
 - suppressed by $m_{ au}^2/m_s^2$
- \widetilde{s} decays dominantly into a slepton pair if
 - the squark masses are heavier than the DM mass $m_{\widetilde{s}}$
 - the slepton masses to be around several hundred GeV

Operators in component fields-3

the operator can be rewritten as

$$\sum_{\widetilde{l}} \frac{-1}{M_{GUT}^2} < \widetilde{s} > \widetilde{s}^* (\widetilde{l_L}^* \Box \widetilde{l_L} + \widetilde{l_R} \Box \widetilde{l_R}^*), \quad (\widetilde{l} = \widetilde{e}, \ \widetilde{\mu}, \ \widetilde{\tau})$$

with the decay width

$$\Gamma_{\tilde{l}} = \frac{\sqrt{M_s^2 - 4M_{\tilde{l}}^2} < \tilde{s} >^2 M_{\tilde{l}}^4}{16\pi M_s^2 M_{GUT}^4}$$

- $\tau_{\widetilde{s}} \sim 10^{26}$ s with $m_s \sim < \widetilde{s} > \sim 1$ TeV and $M_{\widetilde{l}} \sim$ several hundred GeV
- The decay width $\Gamma_{\tilde{l}} \propto M_{\tilde{l}}^4$: slightly different masses between $\tilde{e}, \ \tilde{\mu}$ and $\tilde{\tau}$ may lead to quite different branching ratios.

the DM decay

With R-parity conservation, e^{\pm} can be produced from $\tilde{s} \rightarrow \tilde{l}^+ \tilde{l}^-$

- selectron chain: $\tilde{s} \to \tilde{e} \to e$
- smuon chain: $\tilde{s} \to \tilde{\mu} \to \mu \to e$
- stau chain: $\tilde{s} \rightarrow \tilde{\tau} \rightarrow \tau \rightarrow e$ (using PYTHIA)

In total, the e^{\pm} fluxes due to DM decays at the source are

$$Q_e^{DM}(\vec{r}, E) = \sum_{\tilde{l}} \frac{\Gamma_{\tilde{l}}^{DM} \rho^{DM}(\vec{r})}{m_{DM}} \frac{dN_{\tilde{l} \to e}^{DM}}{dE}$$

The NFW halo model

$$\rho^{DM}(r) = \frac{\rho_{\odot}r_{\odot}}{r} \left(\frac{1+r_{\odot}/r_s}{1+r/r_s}\right)^2$$

with the DM density at earth $ho_\odot=0.3~{
m GeV/cm^3}$ and $r_s=20~{
m kpc}$

 e^{\pm} fluxes at the Earth

Semi-analytical description on e^{\pm} propagation

$$\Phi_e^{DM}(r_{\odot}, E) = \frac{c}{4\pi B(E)} \sum_{\tilde{l}} \frac{\rho_{\odot} \Gamma_{\tilde{l}}^{DM}}{m_{DM}} \int_E^{m_{DM}/2} dE' I(\lambda_D(E, E')) \frac{dN_{\tilde{l} \to e}^{DM}}{dE'}$$

- Effective energy loss coefficient $B(E) = E^2/(\text{GeV} \cdot \tau_E)$
- $\tau_E = 10^{16}s$: The energy loss of e^{\pm} due to ICS on the ISRF and synchrotron radiation
- $\lambda_D(E, E')$: The diffusion length from energy E' to E

$$\lambda_D^2 = 4K_0 \tau_E \left(\frac{(E/\text{GeV})^{\delta-1} - (E'/\text{GeV})^{\delta-1}}{1-\delta} \right)$$

• $I(\lambda_D)$ contains the whole information of the NFW halo model and MED propagation model $(a_i, b_i, c_i \text{ are numerically known})$ $I(\lambda_D) = a_0 + a_1 \tanh\left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l - b_2)^2}{c_2}\right) + a_3\right], \ l = \log_{10} \frac{\lambda_D}{\text{kpc}}$

Fit to Pamela positron data

Parameter set

 $M^{DM} = 6.5$ TeV, $M_{GUT} = 10^{16}$ GeV, $M_{\widetilde{e}} = 380$ GeV, $M_{\widetilde{\mu}} = 370$ GeV, $M_{\widetilde{\tau}} = 330$ GeV, $M_{LSP} = 300$ GeV

Fermi and HESS e^{\pm} spectra

• $\tilde{s} \rightarrow \tilde{e}^+ \tilde{e}^- \rightarrow e^+ e^-$ smooth the $e^+ + e^-$ spectrum and naturally allowing for a good fit to the Fermi LAT measurement

Diffuse gamma-rays from the e^{\pm} excesses

- Final state radiation (FSR): model dependent
 - The bremsstrahlung of e^{\pm} fluxes
 - For the stau chain: $\tau \to \pi^0 \to \gamma \gamma$ dominant above 100 GeV
- Inverse Compton scattering (ICS) on ISRF: somewhat model independent
 - ISRF contains CMB, star light and infrared light
 - Typical photon energy around 10 GeV
- Synchrotron radiation in Galactic magnetic fields
 - Very soft (around 10^{-6} eV), will be neglected

Galactic FSR spectra

Galactic FSR spectra in the region $0^{\circ} \le l \le 360^{\circ}$, $10^{\circ} \le |b| \le 20^{\circ}$

- The stau chain dominant due to $\tau \to \pi^0 \to \gamma \gamma$
- The spectra peak around several hundred GeV

Extra-galactic FSR spectra

Extra-galactic FSR spectra in the region $0^{\circ} \le l \le 360^{\circ}$, $10^{\circ} \le |b| \le 20^{\circ}$

Galactic ICS spectra

Galactic ICS spectra in the region $0^{\circ} \le l \le 360^{\circ}$, $10^{\circ} \le |b| \le 20^{\circ}$

• The selectron chain dominant due to harder $e^{\pm'}$ s produced

Extra-galactic ICS spectra

Extra-galactic ICS spectra in the region $0^{\circ} \le l \le 360^{\circ}$, $10^{\circ} \le |b| \le 20^{\circ}$

Total diffuse gamma ray

Total diffuse gamma ray spectra: $0^{\circ} \le l \le 360^{\circ}$, $10^{\circ} \le |b| \le 20^{\circ}$

- Consistent with preliminary Fermi LAT data below 10 GeV
- Could be tested soon above 100 GeV

Summary

- A SU(5) singlet S as dominant DM candidate
- S decays with lifetime around 10²⁶s
 - via GUT suppressed dim-6 effective operators
 - Spontaneously broken Z_2 symmetry by a TeV scale vev $\langle \tilde{s} \rangle$
- \tilde{s} decays dominantly into a pair of sleptons as
 - $-~ ilde{s} o q ar{q}$, $l ar{l}$: suppressed by m_a^2/m_s^2 or m_l^2/m_s^2
 - $s \to q \tilde{q}$, $l \tilde{l}$: suppressed by m_q^2/m_s^2 or m_l^2/m_s^2
 - Assuming the \tilde{q} masses to be heavier than the DM mass
- $\tilde{s} \rightarrow \tilde{e}^+ \tilde{e}^- \rightarrow e^+ e^-$ smooth the $e^+ + e^-$ spectrum and naturally allowing for a good fit to the Fermi LAT measurement
- A simultaneously fit to Pamela can also be obtained
- The diffuse gamma ray spectrum is compared with the preliminary Fermi LAT data in the region $0^\circ \le l \le 360^\circ$, $10^\circ \le |b| \le 20^\circ$
- Photon energies above 100 GeV may be tested soon by Fermi LAT