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AdS/CFT and its applications.

1) AdS/CFT correspondence is a unique approach to strongly coupled field theories in

which certain questions become computationally tractable and conceptually more

transparent. In condensed matter physics there are many strongly coupled systems that

can be engineered and studied in detail in laboratories. It seems reasonable to hope,

therefore, that the AdS/CFT correspondence may be able to offer insight into some of

these nonconventional materials.
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1) AdS/CFT correspondence is a unique approach to strongly coupled field theories in
which certain questions become computationally tractable and conceptually more
transparent. In condensed matter physics there are many strongly coupled systems that
can be engineered and studied in detail in laboratories. It seems reasonable to hope,
therefore, that the AdS/CFT correspondence may be able to offer insight into some of
these nonconventional materials.

2) Condensed matter systems may offer an arena in which many of the fascinating

concepts of high energy theory can be experimentally realised. In condensed matter

physics there are many effective Hamiltonians. Ultimately one might hope to engineer an

emergent field theory with a known AdS dual, thus leading to experimental AdS/CFT.
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AdS/CFT and its applications.

3) AdS/CFT correspondence allows a somewhat rearranged view of nature in which the

traditional classification of fields of physics by energy scale is less important. If a quantum

gravity theory can be dual to a theory with many features in common with quantum

critical electrons, the question of which is more ‘fundamental’ is not a meaningful

question. Instead, the emphasis is on concepts that have meaning on both sides of the

duality. This view has practical consequences. For instance, seeking a dual description of

superconductivity one realises that there might be loopholes in black hole ‘no-hair’

theorems and one is led to new types of black hole solutions.
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NR-AdS/CFT

Recently some gravity backgrounds with non-relativistic conformal symmetry were
discussed. As it is well known, the DLCQ of a field theory gives a non-relativistic system.
If one considers a sector with large non-zero light-cone momentum one can find regions in
the geometry where the circle has a non-zero size so that computations can be trusted.
For example consider massless Klein-Gordon equation in d dimensional Minkowski
spacetime

�Φ ≡ −∂2
t Φ + ∂2

i Φ = 0 (1)

Defining the light-cone coordinates x± = 1√
2
(t ± xd )

−2∂+∂−Φ + ∂2
i Φ = 0 (2)

Identifying ∂− = −iM then the equation form of the Schrödinger equation in free
(d-2)-dimensional space, with light-cone coordinate x+ playing the role of time

(
2iM∂+ + ∂2

i

)
Φ = 0 (3)

If the parent relativistic theory has a gravity dual one can hope to have a gravity

description of the corresponding quantum mechanical system.
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NR-AdS/CFT

Another example is masive scalar theory. Let us begin by Lagrangian of a complex scalar

L =
1

c2
∂tZ∂t Z̄ − ∂iZ∂i Z̄ − m2c2

ℏ2
ZZ̄ , (4)

the particle modes are given by

Z =
ℏ√
2m

z e−imc2t/ℏ (5)

Non-relativistic limit is defined by c → ∞, in this limit Lagrangian reduce to

LNR = z̄

(
iℏ∂t +

ℏ2

2m
∂2
i

)
z (6)
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ABJM

N = 6 supersymmetric Chern-Simons-matter theory with U(N) ×U(N) gauge group with

Chern-Simons levels (k,−k). The matter fields consist of bi-fundamental scalars Φ
A and

fermions ΨA, which transform under the SU(4) ≃ SO(6) R-symmetry group as 4 and 4̄,

respectively. It is dual to M-theory on AdS4 × S7/Zk .
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ABJM

N = 6 supersymmetric Chern-Simons-matter theory with U(N) ×U(N) gauge group with

Chern-Simons levels (k,−k). The matter fields consist of bi-fundamental scalars Φ
A and

fermions ΨA, which transform under the SU(4) ≃ SO(6) R-symmetry group as 4 and 4̄,

respectively. It is dual to M-theory on AdS4 × S7/Zk .

NR-ABJM(with 14 supercharges)

1) performing a mass deformation (which gives the same mass to all matter fields (up to signs for fermions)

and breaks the SU(4) R-symmetry into SU(2)1 × SU(2)2 ×U(1)R .)

2)takes the usual non-relativistic limit for massive fields.

L =
k

4π
(LCS + Lkin +Lbos + Lint1 +Lint2) ,

where
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NR-ABJM (with 14 supercharges)

LCS = ǫmnp tr

[
Am∂nAp − 2i

3 AmAnAp − Ãm∂nÃp + 2i
3 ÃmÃnÃp

]
,

Lkin = tr

[
φ̄A(iDt )φA − (Di φ̄A)(Di φ

A)
]

+tr

[
ψ̄A(iDt )ψA + ψ̄a(D2

i ψa − F12ψa + ψaF 12) + ψ̄ȧ(D2
i ψȧ + F12ψȧ − ψȧF 12)

]
,

Lbos = 1
2 tr

[
φa φ̄[aφb φ̄b] − φȧ φ̄[ȧφḃ φ̄ḃ]

]
,

Lint1 = 1
4 tr

[
(φ̄aφa + φ̄ȧφȧ)(ψ̄bψb − ψ̄ḃψḃ ) + (φa φ̄a + φȧ φ̄ȧ)(ψbψ̄b − ψḃ ψ̄ḃ )

]

+ 1
2 tr

[
−φa φ̄bψaψ̄b + φȧ φ̄ḃψȧψ̄ḃ − φ̄aφb ψ̄aψb + φ̄ȧφḃ ψ̄ȧψḃ

]
,

Lint2 = − 1
2 tr

[
ǫabǫċḋ (φ̄aψb φ̄ċ ψḋ + φ̄aψċ φ̄ḋ ψb ) + ǫabǫċḋ (φaψ̄bφċ ψ̄ḋ + φaψ̄ċ φḋ ψ̄b)

]
.

The Lagrangian (7) is invariant under the scaling

(t, x ; φ, ψ) → (λ−2t, λ−1x ; λφ, λψ) .

This can be extended to the full Schrödinger algebra which also includes a non-relativistic
special conformal symmetry generator K .

Hossein Yavartanoo Schrödinger invariant solutions of M-theory with Enhanced Sup



Introduction
Solution

Conclusion

Motivation and Setup

NR-ABJM: Supersymmetry

12 Poincaré supercharges of the ABJM theory survive the mass deformation as well as the

non-relativistic limit. (Four of them are singlets under SU(2)1 × SU(2)2. Two of them (Q, Q̄), which

anti-commute to give the Hamiltonian H, are called dynamical. The other two (q, q̄) which anti-commute to give the

U(1)B generator are called kinematical. The remaining eight supercharges {qaȧ , q̄aȧ} transform in (2, 2) of

SU(2)1 × SU(2)2, which we call spectators, commute with all Schrödinger generators except the rotation.)

Commutators between K and (Q, Q̄) require that an additional pair of supercharges
(S, S̄), called conformal supercharges, should exist.

In summary, the NR-ABJM theory has the global symmetry group

U(1)B × SU(2)1 × SU(2)2 ×U(1)R × Z2 ,

where the Z2 interchanges the two SU(2) factors, and contains 14 supercharges.
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BW/LLM solution and subtleties with the NR limit:

The gravity dual of the ABJM theory is AdS4 × S7/Zk . therefore to find the gravity dual
of the NR-ABJM theory, one has to carry over the mass deformation and the
non-relativistic limit to the gravity side.

The gravity dual of the mass deformed theory was obtained some time ago by Bena and
Warner (and reproduced later by Lin, Lunin and Maldacena (LLM)). Bena-Warner begins
with a collection of M2-branes and turns on the four-form flux in the transverse directions.
The flux breaks the SO(8) R-symmetry to SO(4)× SO(4) and polarizes the M2-branes
into M5-branes, which wrap the two three-spheres that are orbits of the SO(4) groups.

The NR-ABJM theory is non-trivial when there are non-zero number of particles, which is
proportional to the eigenvalue of the U(1)B generator, which in turn gets identified with
the central element M of the Schrödinger algebra.

Recall that the U(1)B generator acts on the circle fiber of S7. On the other hand, in the
geometric realization of the Schrödinger algebra, M is identified with a light-cone
momentum.
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BW/LLM solution and subtleties with the NR limit:

The situation is strongly reminiscent of the discrete light-cone quantization (DLCQ)
procedure taken in the context of Schrödinger geometry. A crucial difference is that in our
case the light-cone momentum is taken along a direction transverse to the M2-brane
world-volume. In principle, one could proceed as follows:

First, one modifies the BW/LLM solution by adding the particle number M. In the IIA
picture, it amounts to turning on the flux counting the D0-brane charge.

Second, one makes the standard coordinate change of the DLCQ procedure:

φ̃ = φ − αt , t̃ = t

⇒ H̃ ≡ i∂t̃ = i∂t − α(−i∂φ) ≡ H − αM , M̃ ≡ −i∂φ̃ = −i∂φ ≡ M .

With a suitably chosen constant α and an appropriate scaling limit, the light-cone
Hamiltonian is identified with the Hamiltonian of the non-relativistic theory. The gravity
description is expected to be valid for a large value of M.
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BW/LLM solution and subtleties with the NR limit:

Unfortunately, we are hindered by a technical difficulty; it is not clear how to turn on the
M momentum and obtain the fully back reacted supergravity solution, as the U(1)B circle
is fibered non-trivially along the CP

3 base.

We are thus led to an alternative approach. We will begin with the most general ansatz

consistent with the symmetries of the NR-ABJM theory and look for a supergravity

solution preserving the same amount of supersymmetry.
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Super-Schrödinger symmetry (Bosonic part)

The Schrödinger algebra Schd contains an SO(2, 1) subalgebra among the
time-translation (H), dilatation (D) and special conformal (C) generators.

[D,H ] = +2H , [D,C ] = −2C , [H,C ] = −D ,

as well as the SO(d) subalgebra,

[M ij ,Mkl ] = +δjkM il + δilM jk − δikM jl − δjlM ik .

The remaining generators are space-translations (P i ) and Galilean boosts (G i ). They are
vectors under the SO(d),

[M ij ,Pk ] = +δjkP i − δikP j , [M ij ,Gk ] = +δjkG i − δikG j ,

and satisfy the following commutation relations:

[D,P i ] = +P i , [D,G i ] = −G i , (7)

[H,P i ] = 0 , [C ,P i ] = +G i , [H,G i ] = −P i , [C ,G i ] = 0 .

Finally, we have the central extension with the “rest-mass” or the particle number,

[P i ,G j ] = −δijM .
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Super-Schrödinger symmetry (Global fram)

It is sometimes useful to introduce a Virasoro-like notation,

L0 ≡ 1
2 D , L−1 ≡ H , L+1 ≡ C , P i

−1/2 ≡ P i , P i
+1/2 ≡ G i , M0 ≡ M .

Then, the commutation relations can be compactly summarized as

[Lm,Ln ] = (m− n)Lm+n , [Lm,P i
r ] =

(
1
2 m − r

)
P i

m+r , [P i
r ,P

j
s ] = (r − s)δijMr+s .

The operator-state map naturally introduces the following recombination of generators:

L̂0 ≡ 1

2
(−iH − iC ) , L̂±1 ≡ 1

2
(−iH + iC ±D) ,

P̂ i
±1/2 =

1√
2

(−iP i ∓G i ) , M̂0 = −iM0 .

The new generators also satisfy Virasoro-like commutation relations,

[L̂m, L̂n ] = (m − n)Lm+n , [L̂m, P̂ i
r ] =

(
1
2 m − r

)
P̂ i

m+r , [P̂ i
r , P̂

j
s ] = (r − s)δijM̂r+s ,

as well as the conjugation relations

(L̂m)† = L−m , (P̂ i
r )

† = P i
−r , (M̂0)† = M̂0 .
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Super-Schrödinger symmetry (Geometric realization)

In a (d + 3)-dimensional case, Schrödinger-invariant metric can be written as

ds2 = − dt2

r4
+

2dtdv + d~x2 + dr2

r2
.

The generators of the Schrödinger algebra are realized as Killing vectors of this metric,

Lm = −tm+1∂t − 1
2 (m + 1)tm(r∂r + x i ∂i ) + 1

4 m(m + 1)tm−1(~x2 + r2)∂v ,

P i
r = tr+1/2∂i − (r + 1

2 )tr−1/2x i ∂v , Mm = tm∂v , Mij = xi ∂j − xj ∂i .

In global the new coordinate, the metric reads

ds2 = − dT 2

R4
+

2dTdV − (~X 2 + R2)dT 2 + d~X 2 + dR2

R2
.

The global form of the Schrödinger generators get simplified in this coordinate,

L̂0 = 1
2 (i∂T ) , L̂±1 = 1

2 e±2iT
[
i∂T + i (~X 2 + R2)∂V ∓

(
X i ∂

Xi + R∂R

)]
,

P̂ i
±1/2 = 1√

2
e±iT

(
−i∂

Xi ∓ X i ∂V

)
, M̂0 = −i∂V .
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Super-Schrödinger symmetry (Case 2+3)

Let J ≡ −iM12 be the SO(2) rotation generator. It is useful to combine other generators
according to their helicity (J-eigenvalue) defined by

[J,O] = jO .

For example, Pr ≡ P1
r + iP2

r has j = +1 and P̄r ≡ P1
r − iP2

r has j = −1. In the helicity
basis, the bosonic algebra can be rewritten as

[Lm,Ln ] = (m − n)Lm+n , [Lm,Pr ] =
(

1
2 m − r

)
Pm+r , [Pr , P̄s ] = 2(r − s)Mr+s .

In what follows, we will denote operators with non-negative j by unbarred operators O
and their hermitian conjugates by barred operators Ō.
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N = 2 super-Sch. algebra

The notation N = 2 refers to the supersymmetry of the relativistic parent theory. In the
“Poincaré frame”, it has kinematical (q, q̄), dynamical (Q, Q̄) and conformal (S, S̄)
supercharges, and a U(1) R-symmetry.
In the Virasoro-like notation the supercharges are denoted by q, Q−1/2 ≡ Q, Q+1/2 ≡ S

and their conjugates. They transform under the SO(2, 1)×U(1)J ×U(1)R subalgebra as

[Lm,Qr ] =
(

1
2 m − r

)
Qr , [Lm , q] = 0 ,

[J,Qr ] = + 1
2 Qr , [R,Qr ] = +Qr , [J, q] = + 1

2 q , [R, q] = −q .

[P̄r ,Qs ] = (r − s)q̄ , [P̄r , q] = 0 ,

and anti-commutators among supercharges give

{Q̄r ,Qs } = Lr+s + 1
2 (r − s)

(
J − 3

2 R
)

, {q,Qr } = Pr , {q̄, q} = 2M .

Note that (Lm,Qr , J − 3
2 R) form a closed sub-algebra, called OSp(2|1), isomorphic to

the usual N = 2 superconformal algebra in a chiral sector of RNS superstring world-sheet.
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N = 6 super-Sch. algebra

The additional eight supercharges, which we call spectator supercharges, satisfy the
following relations:

[Lm, qaȧ ] = 0 , [Pr , qaȧ ] = 0 = [P̄r , qaȧ ] ,

{Qr , qaȧ} = 0 = {Q̄r , qaȧ} , {q, qaȧ} = 0 = {q̄, qaȧ} ,

[J, qaȧ ] = + 1
2 qaȧ , [R, qaȧ ] = 0 ,

[Ra
b , qcċ ] = −δα

γqbċ + 1
2 δa

bqcċ , [R ȧ
ḃ , qcċ ] = −δa

cqċ ḃ + 1
2 δȧ

ḃ
qcċ ,

{
q̄aȧ , qbḃ

}
=

1

2
δa
bδȧ

ḃ
M − δa

bR ȧ
ḃ + δȧ

ḃ
Ra

b ,

where Ra
b, R ȧ

ḃ are the SU(2) generators defined by

[Ra
b ,Rc

d ] = δc
bRa

d − δa
dRc

b , (Ra
b )† = Rb

a .

The N = 2 subalgebra still holds, except that the generator R is replaced by

R̃(4/3)R − (2/3)Σ. In the field theory, the shift is partly due to an additional conserved

quantity, namely, the fermion number Σ. From the commutation relations, we see that

the shift is needed to make qaȧ neutral under J − 3
2 R̃, which should hold because qaȧ

commutes with Qr .
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Ansatz
Recall the sequence of the R-symmetry breaking,

SO(8) ⊃ U(1)B × SU(4) ⊃ U(1)B × SU(2)1 × SU(2)2 ×U(1)R .

To see how these R-symmetries are realized geometrically, consider S7 as a warped
product of two S3’s, and write down the metric as

ds2
S7 = dα2 + cos2 α dΩ

2
1 + sin2 α dΩ

2
2 .

We use the standard Euler-angle coordinates (θ, φ, ψ) for each S3:

dΩ
2
i =

1

4

[
dθ2

i + sin2 θidφ2
i + (dψi − cos θidφi )

2
]

(i = 1, 2, no sum).

We choose the orientations of the 3-spheres such that the U(1)R acts diagonally on ψ1,2

and the U(1)B acts with an opposite relative sign.
Now, let us begin with AdS4 × S7/Zk and imagine taking the mass deformation and then
the non-relativistic limit. The procedure will change the metric significantly, but the
R-symmetries (8) as well as the time and space translation (in Poincaré patch) should be
preserved throughout. Moreover, the fibration structure of the U(1)B and U(1)R angles
over the two S2’s should be maintained.
In what follows, we will use the following notations

w = 1
2 (ψ1 + ψ2) , v = 1

2 (ψ1 − ψ2) , (8)

Dw = dw − 1
2 (cos θ1dφ1 + cos θ2φ2) , Dv = dv − 1

2 (cos θ1dφ1 − cos θ2φ2) , dω2
i = 1

4 (dθ2
i + sin2 θidφ2

i ) ,Hossein Yavartanoo Schrödinger invariant solutions of M-theory with Enhanced Sup
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Metric
We can try to write down the most general ansatz for the metric and the 4-form flux
consistent with the Schrödinger symmetry, global symmetries as well as the fibration
structure. we propose our ansatz for the metric,

ds2 = e2c1

(
−c2

dt2

r4
+

2dt(Dv + c3Dw) + dr2 + d~x2

r2
+

4

9
e2h2 (Dw)2

)
+ e−4c1

(
e−2h2dy2 +

4

3
e2h1 (e+2h3dω2

1 + e−2h3dω2
2)

)
.

All the functions (c1,2,3, h0,1,2,3) depend only on y , which is the only coordinate not
constrained by the continuous symmetries of the geometry. We “gauge-fixed” the
reparametriztion invariance in y by a particular choice of gyy . The numerical factors 4/9
and 4/3 are inserted for later convenience.

( The Schrödinger symmetry and R-symmetry allow for two more terms in the metric,

r−2dtdy and Dwdy , but both of them can be removed by shifting v and w by

y -dependent functions.)
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Orthonormal frame

The metric ansatz admits a natural orthonormal frame,

e+ =
e2c1

r2
dt , e− = − c2

2r2
dt + Dv + c3Dw ,

e1 =
ec1

r
dx1 , e2 =

ec1

r
dx2 , e7 = 2

3 ec1+h2Dw , e8 =
ec1

r
dr , e9 = e−2c1−h2dy ,

(e3, e4 ; e5 , e6) =
1√
3

e−2c1+h1
(
e+h3 (σ1, σ2) ; e−h3 (τ1, τ2)

)
.

Here, σA, τA are invariant one forms of S3’s.
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Flux

F = e−3c1e+8
[
e−2c1k1e12 + e4c1−2h1 (e−2h3k4,1e34 + e+2h3k4,2e56)

]

+eh2 e+9
[
e−2c1k2e12 + e4c1−2h1 (e−2h3k5,1e34 + e+2h3k5,2e56)

]

+ec1 e97
[
e−3c1k3e+8 + e4c1−2h1 (e−2h3k6,1e34 + e+2h3k6,2e56)

]

+e8c1−4h1k7e3456 .

Here, we are using the shorthand notation eab = ea ∧ eb, etc. and assuming wedge
products among differential forms. We inserted compensating factors of metric
coefficients so that the Bianchi identity (dF = 0) maintains the simple form,

k ′1 + 4k2 = 0 , k ′4,1 + 2k5,1 − k3 = 0 , k ′4,2 + 2k5,2 − k3 = 0 , k ′7 − (k6,1 + k6,2) = 0 . (9)
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Flux

F = e−3c1e+8
[
e−2c1k1e12 + e4c1−2h1 (e−2h3k4,1e34 + e+2h3k4,2e56)

]
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e−2c1k2e12 + e4c1−2h1 (e−2h3k5,1e34 + e+2h3k5,2e56)

]

+ec1 e97
[
e−3c1k3e+8 + e4c1−2h1 (e−2h3k6,1e34 + e+2h3k6,2e56)

]

+e8c1−4h1k7e3456 .

Here, we are using the shorthand notation eab = ea ∧ eb, etc. and assuming wedge
products among differential forms. We inserted compensating factors of metric
coefficients so that the Bianchi identity (dF = 0) maintains the simple form,

k ′1 + 4k2 = 0 , k ′4,1 + 2k5,1 − k3 = 0 , k ′4,2 + 2k5,2 − k3 = 0 , k ′7 − (k6,1 + k6,2) = 0 . (9)

Parity symmetry There is a discrete Z2 symmetry exchanging the two 2-spheres which

acts as a parity y → −y . The unknown functions have the following parity eigenvalues,

Even : c1, c2, h1 , h2, k1, (k4,1 + k4,2), (k5,1 − k5,2), (k6,1 + k6,2) .

Odd : c3, h3 , k2, k3, (k4,1 − k4,2), (k5,1 + k5,2), (k6,1 − k6,2), k7 .
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Solution and a Sketch of the Computation
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Our approach to the problem will hinge upon two standard tools used for finding
supersymmetric solutions, namely, the spinorial Lie derivative and the G-structure.
Lie derivative of a spinor ǫ with respect to a Killing vector K may be defined as

LK ǫ = Km∇mǫ +
1

4
(∇aKb ) Γ

abǫ.

In general, the spinorial Lie derivative gives a geometric realization of the algebra,

[K ,Q1 ] = Q2 ⇐⇒ LK ǫQ1
= ǫQ2

.

From the metric ansatz, one may then write out the spinoral Lie derivatives associated to
the various Killing directions. The Lie derivatives of the spinors, via the super Schrödinger
algebra discussed in section 2, determine all coordinate dependence other than the
y -direction of the two dynamical supercharges Q. Once Q are determined, the
kinematical q and conformal S supercharges also may be worked out from the algebra.
Assuming the existence of Killing spinors {ǫi}, one constructs the following differential
forms

Kij = (ǭi Γaǫj )e
a ,

Ωij =
1

2
(ǭi Γabǫj )e

ab ,

Σij =
1

5!
(ǭi Γabcdeǫj )e

abcde .
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The Killing spinor equations imply that Kij are Killing vectors, so that (10) becomes a
geometric representation of the algebra

{Qi ,Qj} = Kij .

In addition, the KSE give a set of algebraic and differential relations among (K , Ω, Σ).
These relations are equivalent to the original KSE by construction, but are often easier to
solve and illuminate the geometric structure more clearly.
We will demand that our ansatz admit the six supercharges of N = 2 super-Sch algebra.
The kinematical supercharges (q, q̄) correspond to null Killing spinors whereas the
dynamical supercharges (Q, Q̄) correspond to time-like Killing spinors. We first focus on
the real combination ǫ = 1

2 (q + q̄) which satisfies the two projection conditions

Γ
3456ǫ = −ǫ (singlet under SU(2)1 × SU(2)2) , Γ

+ǫ = 0 ,

Restoring both components (q, q̄) then defines an SU(4) sub-structure of the Spin(7)
structure. Having started by introducing an ansatz, making the G-structure manifest
entails a small frame rotation from the original frame to the canonical G-structure frame.
Similarly, for (Q, Q̄) we find an SU(4) sub-structure of the SU(5) structure. The
conformal supercharges (S, S̄) do not yield any new information because they are related
to (Q, Q̄) by the conformal symmetry generator and all bosonic symmetries are already
built into our ansatz. Hossein Yavartanoo Schrödinger invariant solutions of M-theory with Enhanced Sup
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Block A : The equations for (c1, h1, h2,h3) decouple from all other variables.

4h′1 − h′2 = −c ′1(2h′1 + h′2)2e6c1+2h2 , 9c ′1 = (9c ′1 − 4h′1 + h′2)e2h2 ,

2h′1 + h′2 = 6(h′1 + h′3)e−6c1+2h1−2h2+2h3 , h′3 cosh(2h3) = −h′1 sinh(2h3) .

The following auxiliary equations will also be useful,

cos ζ = eh2 , sin ζ = − 1
3 (2h′1 + h′2)e3c1+2h2 =

1

3c ′1
(−ζ ′ cos ζ + 2e−3c1 ) .
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Block A : The equations for (c1, h1, h2,h3) decouple from all other variables.

4h′1 − h′2 = −c ′1(2h′1 + h′2)2e6c1+2h2 , 9c ′1 = (9c ′1 − 4h′1 + h′2)e2h2 ,

2h′1 + h′2 = 6(h′1 + h′3)e−6c1+2h1−2h2+2h3 , h′3 cosh(2h3) = −h′1 sinh(2h3) .

The following auxiliary equations will also be useful,

cos ζ = eh2 , sin ζ = − 1
3 (2h′1 + h′2)e3c1+2h2 =

1

3c ′1
(−ζ ′ cos ζ + 2e−3c1 ) .

Block B : With the solutions of Block A as an input, we can solve the equations for
(c3, k1, k2, k3).

k2 = −k3 , k1 = − 6c3

sin ζ
e3c1 , 3c ′3 = 2

(
k1e−6c1

h′1 − h′2
2h′1 + h′2

− k3e−3c1 sin ζ

)

3c ′3 + k1e−6c1 = 6 sin ζ(c3 cosh(2h3)− sinh(2h3))e3c1−2h1 ,
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Block C : The last metric component c2 and all the remaining flux components are
determined algebraically by the solutions of Block A and Block B.

c2 =
(

1
4 k1e−3c1

)2
,

k4,1 = − 3
2 (c3 + 1)e3c1 sin ζ − 1

4 k1(2e−6c1+2h1+2h3 − e2h2 ) ,

k4,2 = − 3
2 (c3 − 1)e3c1 sin ζ − 1

4 k1(2e−6c1+2h1−2h3 − e2h2 ) ,

k5,1 = − 3
2 (c3 − 1)e+4h2 ,

k5,2 = − 3
2 (c3 + 1)e−4h2 ,

k6,1 = − h′1 + 2h′2 + 3h′3
3(h′1 + h′3)

e2h2 ,

k6,2 = − h′1 + 2h′2 − 3h′3
3(h′1 − h′3)

e2h2 ,

k7 = 6c ′1e−6c1+4h1 .
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The final form of the solution may be most neatly captured in terms of two quadratic
polynomials,

g1 = 1− y2 , g2 = 1 + 1
2 cy + y2 .

The metric components are

e6c1 = g2
1 g−1

2 , c2 = b2g−2
1 g−1

2 , c3 = 4
3 byg−2

1 ,

e2h1 = g1 , e2h2 = 1− 4y2e−6c1 , e2h3 = 1 ,
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Solution
The final form of the solution may be most neatly captured in terms of two quadratic
polynomials,

g1 = 1− y2 , g2 = 1 + 1
2 cy + y2 .

The metric components are

e6c1 = g2
1 g−1

2 , c2 = b2g−2
1 g−1

2 , c3 = 4
3 byg−2

1 ,

e2h1 = g1 , e2h2 = 1− 4y2e−6c1 , e2h3 = 1 ,

and the flux components are

k1 = −4bg−1
2 , k2 = −bg ′

2g−2
2 , k3 = bg ′

2g−2
2 ,

k4,1 = −3y + b(2g−1
1 − g−1

2 ) k4,2 = +3y + b(2g−1
1 − g−1

2 ) ,

k5,1 = + 3
2 − 2ybg−2

1 k5,2 = − 3
2 − 2ybg−2

1 ,

k6,1 = k6,2 = 1− 4g2g−2
1 , k7 = −4g ′

2g−1
1 + 2g ′

1 + 3g ′
2 .
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Non-existence of spectator supercharges

Our original goal was to find the gravity dual of the NR-ABJM theory with 14

supercharges. But, the Killing spinor equations for the six N = 2 supercharges have

already determined all unknown functions in our ansatz completely. Proceeding with the

same methods, it is not difficult to show that our solution does not admit the other eight

‘spectator’ supercharges.
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We saw in section 2 that the anti-commutations of two spectator supercharges give the
generators for SU(2)1 × SU(2)2 as well as the central element M.

{
q̄aȧ , qbḃ

}
=

1

2
δa
bδȧ

ḃ
M − δa

bR ȧ
ḃ + δȧ

ḃ
Ra

b ,

From the geometric point of view, the spinor bi-linears ǭΓ
mǫ made of the Killing spinors

ǫaȧ corresponding to qaȧ should produce the Killing vectors for the generators on the right
hand side of above expression. Now, recall that qaα̇ commute with (H,D,C ,P, P̄,M).
Inspecting the spinorial Lie derivatives, especially LC ǫ, we find that ǫaȧ must be
annihilated by Γ

+. This implies that all bi-linears constructed from ǫaȧ can have non-zero
components only in the (x−)-directions much like the kinematical supercharges (q, q̄)
discussed earlier:

ǭaȧ
Γ
mǫbḃ = 0 (except for m = −) .

In particular, the generators for SU(2)1 × SU(2)2 symmetry cannot be produced by the

Killing spinors. We thus proved without much computation that the Killing spinors for the

spectator supercharges with desired algebraic property do not exist within our ansatz.
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Even if we give up the SU(2)1 × SU(2)2 generators, it is still impossible to obtain eight
extra Killing spinors as one can see from the following counting argument. We argued
above for the projection condition Γ

+ǫaȧ = 0. The fact that qaȧ transform in the same
way under the two SU(2) groups imply that ∂v ǫaȧ = 0, which together with LM ǫaȧ = 0
yield another projection condition, Γ

3456ǫaȧ = −ǫaȧ. Finally, since ǫaȧ are null Killing
spinors, it enforces yet another condition, Γ

9ǫaȧ = ǫaȧ. Three mutually orthogonal
projection conditions leave at most 32/23 = 4 independent components, so the possiblity
of eight extra spinors is excluded.
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We have shown that a supergravity background dual to the NR-ABJM theory preserving
the super-Schrödinger symmetry and all the global symmetries does not exist. We do not
have a clear physical understanding of why this is the case. We end this talk with two
possible directions we may pursue to find an explanation.
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We have shown that a supergravity background dual to the NR-ABJM theory preserving
the super-Schrödinger symmetry and all the global symmetries does not exist. We do not
have a clear physical understanding of why this is the case. We end this talk with two
possible directions we may pursue to find an explanation.

First, it is conceivable that the singularity problem of the unpolarized BW/LLM solution

mentioned in section 2 is unavoidable, so that even if we find a good way to take the

non-relativistic limit, the resulting geometry would be necessarily singular. If this is true,

we may need to doubt either the existence of the NR-ABJM theory as a quantum field

theory or the validity of non-relativistic holography.
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No-spectator

We have shown that a supergravity background dual to the NR-ABJM theory preserving
the super-Schrödinger symmetry and all the global symmetries does not exist. We do not
have a clear physical understanding of why this is the case. We end this paper with two
possible directions we may pursue to find an explanation.

First, it is conceivable that the singularity problem of the unpolarized BW/LLM solution
mentioned in section 2 is unavoidable, so that even if we find a good way to take the
non-relativistic limit, the resulting geometry would be necessarily singular. If this is true,
we may need to doubt either the existence of the NR-ABJM theory as a quantum field
theory or the validity of non-relativistic holography.

Second, note that we have searched for a gravity solution preserving all Schrödinger and

global symmetries apart from the non-zero particle number (M-eigenvalue). Via

holography, it would correspond to a ground state of the NR-ABJM theory for a fixed

non-zero particle number that preserves all the symmetries. It is not obvious a priori

whether such a ground state should exist in the field theory. If holography works, the

non-existence of the fully symmetric gravity solution may be an indication that the ground

states of the field theory necessarily break some parts of the symmetries.
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