Linear and Nonlinear Realizations of
Supersymmetry

Mingxing Luo

Zhejiang Institute of Modern Physics
Physics Department, Zhejiang University

Beijing December, 2009



| Referencesl

H. Luo, ML, L. Wang, e-Print: arXiv:0911.2836
H. Luo, ML, S. Zheng, e-Print: arXiv:0910.2110

D. V. Volkov, V. P. Akulov, PLB46, 109 (1973)

E. A. Ivanov, A. A. Kapustnikov, JPA11, 2375 (1978);
JINR-E2-10765, Jun 1977;JPG8, 167(1982)

S. Samuel, J. Wess, NPB221, 153 (1983)
J. Wess, J. Bagger, SUSY/SUGRA, Chapters 11/26
Z. Komargodski, N. Seiberg, e-Print: arXiv:0907.2441



|Outline|

Prelude

— Three Goldstino fields: linear/nonlinear/constrained
— Two pion fields: linear/nonlinear

Superspace, linear/nonlinear realization of SUSY
Reformulate linear SUSY into nonlinear ones
Nonlinear Goldstino field out of linear superfield
Constrained superfields

Low energy effective theory

Conclusions



|Prelude—1|

e Spontaneous breaking of global symmetries — massless
Goldstone particles

e Properties of Goldstone particles < the nature of the
broken and unbroken symmetries

e Strong interactions: pions < spontaneous breaking of
chiral symmetry

e Low energy physics of pions: nonlinear realization of
chiral symmetry

— EXpansion in terms of energy-momentum



|Prelude—2|

e Goldstino: spontaneous breaking of global SUSY
e Supergravity: Goldstino is part of the massive gravitino

o Msysy < Mp: Ilower energy physics dominated by
Goldstino

e Goldstino physics could be of importance at the TeV
scale and tested in LHC

e Low energy physics of Goldstinos: linear SUSY /nonlinear
SUSY /constrained superfields



Goldstino Field in O’Raifeataigh-like modelsl

e Linear SUSY, chiral fields responsible for SSB
e Chiral super-multiplet ® ~ (¢, 9, F")

e = V284,
5§¢a — \/§F§a—|—i\/§(a“.‘j—)aﬁuq§,
0cF = ivV2EaHoup.

e T he Goldstino field

— F-term in one &g develops a nonzero VEV (Fp),
SUSY is spontaneously broken

— Goldstino field v¥g: zero mass and changes as

Sehoa = V2(Fo)la + -+

— If several F' have nonzero VEVS, realignment can be
made such that only ®g has a nonzero VEV.



|Go|dstino Field in Nonlinear Realization of SUSYl

e Non-chiral version

Ge A" = 150‘ — ik(AoHE — EaPN) 9N

K
— 1_ _ — —
55)\0'4 — Efa — ili()\O"uf — 50“)\)({9“)\@

e Chiral version

~ fa

K
e Conversion

() = Aa(2), z=2x— i’ 2)oA(2)



‘Work of Komargodski/Seiberg-lI

e Conservation equation: D*7,; = Do X
e Supercurrent multiplet:

1 _
_ 2 1
z(y) + @m@(y) + 0% F (y)
ha = i N - 2T—|—z’8ﬂj“, gt = ok + i0ohF

OéOé H!



‘Work of Komargodski/Seiberg-2 I

e SUSY spontaneously broken, the low-energy supercur-
rent in terms of the massless Goldstino G,

Sua = V2f0,,aG* + f(0uw)50"Gg + -
e Low-energy Goldstino not accompanied by a massless

scalar, the simplest bosonic state ~ two Goldstinos

e SUSY partners:

one Goldstino Q£|O> ~ “two Goldstinos” Q§Q£|O>
® 4 Creates a one Goldstino state

¢ ~ x Ccreates a two Goldstino state



‘Work of Komargodski/Seiberg-3 I

e In combination with the SUSY algebra

G2
XNL—Q——I—\/_HG—I—HQF X%7, =0

e Integrate out heavy fields by constraints

e Coupling with superfields: spurion ¥ — mf}?ftXNL

XNL

f

[ @oNE (28,00 + A QQY) + e

XNL

(m*)](Qe" Q)

'Csoft — _/d49

2
Looge= [ d*

Xy
EDWo | dQHTm,\WaWO‘+c.C. ,



|The Web of Relationsl

e Relation between )\ and g

— M is closely related, but not identical, to g

— X ~ 9 to the leading order, if k=1 = V2(Fp)
e Construct )\ out of (¢p, Yo, Fpy) C Py

Yo 0“)\
V2rFy  Fp
e EXpressing X in the language of nonlinear SUSY
e Comparison with the nonlinear/linear o-model

— A~T

o (¢Oaw07 FO) ™~ ¢CL

— X% =0~ ¥, ¢2 = constant

N = (Oudo — V26XOutpo + K2 X20,Fo)



|Para|lels: Pions as Goldstone Bosons—ll

e Linear o-model
— SO(4)-invariant Lagrangian of the linear o-model

M? A
L = ——8u¢na’u¢n — —¢n¢n - Z(¢n¢n)2

1 1 4 1 A
= —§8M08”0 — 502 Zl OMR,y40uRpg — 5./\/1202 — ZO'4

n=—

én(z) = Rpa(z)o(z), RITR=1, o= |3 ¢2

n

— if M2 <0, ¢ has a non-zero VEV



|Para|le|s: Pions as Goldstone Bosons—2|

e Nonlinear s-model
— Redefine the fields

_1-¢

o= S Gu)o = Rua = 2%, 0a/o = Rag

QCCL 1_5—2
Rya= " = —Rg,, Rasa= 175

— Nonlinear o-Lagrangian

142
2GaCp
1+ (2

Rab — 5ab -

1 P 1 A
L = —§8M08“J — QJQDMD“ — 5./\/1202 — ZJ4

. 0,C
Du = “_,2
1+¢




|Para|lels: Pions as Goldstone Bosons-3|

e Transformation rules in nonlinear c-model
— Isospin: ¢ =0 X ¢,0p4 = 0O

S0 =0, 6(=0xC(, 6D, =0 x

— Axial isospin: 5qb = 2€py, 0¢gq = —2¢€-

So =0, 6 =e(1—C2)4+20(€-C), 6D, =2(Cx &) x D,

e Take F = 2(cs)and 7 = F(,
(Set ¢ to its VEV, constraint: ¥, ¢2 = (0)?)
F? 1 9,7 OH7
L=—-""D,DW I
g 2(1+72/F2)2

%l Ui

2



|Superspace, Translations, Induced Realizationl

e Superalgebra
{Qa, Qa} = —2i0h 0u, {Qa,Qs} =0, {Q4 Qy}=0

e Supergroup element in superspace (x,0,0)

— G(x,0,0) = exp [i(—a:“Pu + 00 + é@)]
e Multiplication

— G(0,£,6)G(x,0,0) = G(x + (00 — £00),0 +£,0 + &)
e [ranslation in superspace

— ' =x+i(0cf —€00), 0 =0+¢, 00 =0+¢

generated by £Q + £Q)

Qo = Oa — i(a“g)aﬁu, Q, = —0;+ i(0c") 40u



|Linear Realization of SUSY'

e Induced linear realization of the superalgebra

{Qa, Qa} = 2i0},;0u, {Qa,Qp} =0, {Qs Qs =0

e Change in sign, the order of multiplication reversed

e Superfield:

F(z,0,0) = f(z)+ 0¢(x) + 0x(z) + 00m(z) + 06n(x)

0ot 0v,(x) + 000X (x)

000 ()

0000d(x)

e Linear transformation mixes different components

0cF (x,0,0) = (£Q +EQ)F (x,0,0)

= d¢f(z) + 05:9(x) + §5€)_<($) + 006em(x) + 50_5§n(at)
-+ 90“§5§vu(m)-+-99§35A(x)-+-§§055¢(x)-+-90§§5§d(x)



Nonlinear Realizations of SUSY—1|

e Induced nonlinear realization: 0 — sA(x)
1 - - 1_
N =Maz) +=¢, N =Maz) + £
K K

e Infinitesimal changes v‘g(a:) = k(AoHE — EaHN)

1 | - 1. _
G At = Ega — zvg(x)ﬁu)\a, OeAe = ;gd — zvg(x)aﬂ,\d

e [ he SUSY algebra is closed
e Matter fields
ocf(z) = —ivg(az)auf(zv)



INonlinear Realizations of SUSY—2|

e Taking (z/, ¢, 0") as functions of (z, 6, )
dx'" = dat 4+ idOoté — iEoHdo
do’* = do*, do, = db,,
e Define differentials
et = dat — id0cot0 + i6cHdo
ea — d@a, €y — dgd
o (£,0,0) — (/,0',0"), et — &
et = da'* — idf' oP0 + 0’ oHdf’ = et

It is invariant.



|Non|inear Realizations of SUSY—3|

e Akulov-Volkov Lagrangian
— Substituting 0 = kX and df = k(O\/0xH)dxH
et — da¥ [6F — k2O AN + 73/432)\0“8,/5\] = dz" TV
— A-V Lagrangian

1

K
— L changes by a total derivative

dedet T = —ikdy |(AoHE — EoMX)det T)

e Any SUSY non-invariant theory can be prompted
to an (nonlinearly) invariant one
(Low energy effective theory, later)



|From Linear to Nonlinear SUSY-1|

e General linear super-multiplet
&7 (2,0,0) = e MNDQ=RAD R, (2,0,0) = (7, 0,0)

T =z + ikA(x)ol — ikboX(x)
0 =0—r)(z), f=0— k()
e All components of ®7 change as matter fields

_ | 9 _
6¢ Py (x,0,0) = —zvg(:c)@df,g(w, 0,0)



From Linear to Nonlinear SUSY-2|

e Generic action, linear
Sgen = [ d*zd*0Lgen
X (Pi(x,0), Pr(z,0,0), Da®y, DaDgPy, ...)
e Generic action, nonlinear
Sgen = /d4xd49Ber (a:,@,é)
X Lgen (P7 (x,0,0), DL (x,0,0), Aa®PT, Ao A7, ...)

Ber <:c, 0, 5) = det T(x) det M(z, 0, 0)
M (z, 0, 9) = oy, + ikV uX\(x)o?’0 — ik0o¥V A ()

e Covar. derivatives: V¥ = (T—l)gap, No = a%a—l—i(aué)aA“

0 - 0
U — —1\u v v v
A = (M™)E (V + V )\(x)—ae + Vv )\(:U)—a§>



From Linear to Nonlinear SUSY—3|

e Chiral superfield o,
Py(x,0,0) = exp (i05"80,) S¢(x,0)

®7(z,0,0) = LT(8/0x,0/90)57 (x,0)
S9(z,0) = S (55+, 9‘)
FT =2 — 2ikfo\(z) + ik A(z)o(z)
LT (8/0z,0/00) = 1 + i0oHGA;T + %QQH_QA;'[A“"‘

0
00

Mt (z,0) = &% — 2ikl0, VYR,  AF = LV

AR = (M (v'/ + vum%)



|From Linear to Nonlinear SUSY-4|

e Chiral part of the action, linear
Sen, = [ d*x (d?0Lp,(Si(x,0)) + C.C)
e Chiral part of the action, nonlinear
S —/d4 (dQHB + (2.0 o
on = [ d*a ert (2,0) Lo,(S7 (2,0)) + C.C

Ber™T (z,0) = det T(x) det MT(x, 0)



|From Linear to Nonlinear SUSY: Recapturel

e Linear superfields to nonlinear ones
Q7 = exp |-k (AQ + AQ)| 2
e SUSY transformation rules for €29
6§27 = —i(Aot€ — EaHN)D,Q°
e All component fields in €29 transform into themselves

e Any of them can be integrated out without breaking
SUSY, via e.o.m. (tree level) or matching (QM), pro-
ducing high dimensional operators

e Extremely heavy ones: set to zero directly

e \Whether and how to integrate out a field are dynamical
questions



|Construct the Nonlinear Goldstino Field >\|

e Generic OR model: (dg — Sg by ridding of i600)
So(z,0) = ¢o(x) + V204g(x) + 0 Fy(x)
e Essential: (Fp) #0
e [ he corresponding nonlinear super-multiplet
S% = So(z — 2ikboA(z) + ik’ A(z)oA(z),0 — kA(z))

e Construct A out of the components of Sp: demanding
Y@ to vanish and re-express A in terms of X

Yo 0“)\
V2kFy FO
e T he analog of representing 7 in terms of ¢, in o-models

\ =

((%qbo — V2 /i)\auwo + /iQAQ@MFO)



|Comments on the Constructionl

e Taking k1 = V2(Fp): X ~ g to the leading order

e )\ (\) transforms properly

e Y§ = 0 in ®F = exp|—r (AQ + AQ)| Pg when this X is
used, it is realized by the definition of A

e g cannot be dropped by the reasoning of dynamics for
It's not heavy, it is actually massless

e Feasibility due to the SUSY algebras

e Can always construct a A for any chiral super-multiplet,
but cannot be used to separate the Goldstino field from
the others



|From Linear to Nonlinear Lagrangiansl

e Standard procedure, with this definition of A\

e NO explicit form of A is needed, the key element is
Y@ = 0, which is all needed

e In the process, the Goldstino field disappears from the
original Lagrangian, but reemerges in the Jacobian of
the transformation and covariant derivatives

e Vertices with Goldstino fields carry at least one space-
time derivative, as one would have expected

e All fields are kept, heavy ones can be integrated out,
via €.0.m. or matching



|Mass Spectrum in Nonlinear Lagrangiansl

e Space-time derivatives are not allowed in potential terms,
Goldstino field is absent in the nonlinear version

e Potential terms in the nonlinear version
/d“az(d?@W(Sf, S§) + h.c.)

e [ he same structure as the linear version
/d4m(d29W(St, So) + h.c.)

1Yo 1S massless: no bilinear terms v¥oyg Or Yoy,

e [ he mass spectrum is not changed by going from the
linear version to nonlinear one by setting ¢g =0



|Construction of the Goldstino field in F-I modelsl

e Abelian gauge field
V = D0%0% + v00° + x00° + - - -
e Non-zero VEV for D — SUSY spontaneously broken

e \. massless, the Goldstino field

e Define a nonlinear Goldstino field A by demanding x° =
O in nonlinearly realized super-multiplet V¢

e Problems about gauge and supergravity



|Constrained Field for the Goldstino—ll

Goldstino field in a linearly chiral superfield Xy,
XJQVL — 0, to rid of the scalar component
— Supersymmetry structure and its breaking
— Xny = G2 420G + 02F
NL =5p T +
Define AN = G/V/2kF

Sy b= % — 2icANEgrgg AN

AVL transforms in exactly the same way as \
ML =X and Xy; = FO2, © =04 k)



|Constrained Field for the Goldstino—2|

e Self consistent check:
— A disappears in the nonlinearly realized super-multiplet
e Reverse the logic

— For any chiral superfield ® = ¢ + 20y + 02F
define \® = ¢ /\/2kF
Seda = Sa 2ikAPHEIND + i(a“é)aau b — L
Y kK ¢ KF 2F

— Demanding A® to transform in the same way as that
of X, one obtains ¢ = ¢2/2F and ®2 =20



|Constrained Field for the Goldstino—3|

e Prompt M\ to a linear superfield
A(X) = exp(6Q + 0Q) x A
e Construct two chiral fields out of A and A

1 15
Po = —ZDQ/\/\, by = —ZDQ/\/\/\/\.

Dy = f2(N)O%, Py = f2(N)O7
e >, fa. definite functions of A

e f4. the AV Lagrangian up to an overall constant and
possible total derivative terms

e f1/f> and F/fo transform as matter fields



|Constrained Field for the Goldstino—4|

e Some history:
PyD?Py ~ Py
while ®5 does not have such relation

e [ he rationale to choose d, instead of ®, to be the
superfield for Goldstino

e [ hey differ only by a matter field in the standard real-
1zation

e Obvious in retrospect, since ®3 = ®3 = 0, the same
form of factorization



Constrained Field for the Goldstino—4|

Real superfield V4 = A2AZ2

V2 =0 and V3 = f4(\)©?82, © =0 + k)

fa: the AV Lagrangian up to an overall constant and
possible total derivative terms

V2 = 0 cannot be preserved under a general gauge
transformation

For any V = D#202 + x002 + X002 + - - -
— Define \V = x/2xD

JeNy, = €—0‘—i(,\Vaﬂg‘—gaﬂxv)a,,,\g+%(tota| derivatives)

K

— Demanding A\ to transform in the same way as that
of )\, one gets V = DO28?2

— D/ f4 transforms as a matter field



|Constrained Field for the Goldstino—5|

e [ he constraint to rid of the scalar component in a chiral
superfield, QN1 = ¢q + V20v, + 0°F,
XN@nL =0
From which, one gets

5, = Y G?
T oF2 1
e Equivalent to the constraint ¢ =0




‘Low Energy Effective Theory—ll

e Prompt A and matter fields to linear super-multiplets
AN = exp(0Q + 0Q) x X

Q) = exp(0Q +0Q) x ¢
e SUSY non-invariant action — SUSY invariant one

/ d*zL(Oup, )

J
K3 / d*zd*ONNANL (9,9, Q)

o N(x) = k10 = k=10 + A(z)
Q(x) = o(2), z =z — ikX(2)00 + ikOo(2)



|Low Energy Effective Theory—2|

e Integrate out the Grassmann variables: (z,0) — (z,H')
S = /d4x(det T) L(Vup, ¢)
e Same results by changing 9, — V,, and inserting det T

e S is invariant under nonlinear SUSY transformations

e Integrations over the Grassmann variables can always
be carried out in a similar manner for arbitrary function-
als of A and €2 — extra operators for effective theories



‘Low Energy Effective Theory—3|

e Subtleties for gauge theories

e \WWess-Zumino gauge, starting with the transformation
5€Xa O"uygaFluy + Z£D
o¢D —D,xot€ — Ea DX

e Construct four superfields V,, = exp(6Q + 0Q) x A,

e Four nonlinearly realized superfields




‘Low Energy Effective Theory—4|

e Transformation rules of A,
5514“ = —iKVg Fy’u
Py = 84 A, — i0, A, —i[A,, A)]
e T his can be rewritten as
5§AM = —IKV{ &/AM — zm@uvg A, + DILL<Z/€”U£VA;/)
e [ he last term can be compensated by a gauge trans-

formation of the parameter —mngV

e Under this combination of SUSY and gauge transfor-
mations

!/~

5§Au — —mvg 8,/AM — Zlﬁ}a/ﬂjg



‘Low Energy Effective Theory—5|

e Define
Dy = (T7 1) Dy = (T 1)}(8y — iAv)

Fur = (T DT 1)9(0pAs — 05 Ap — i[Ap, Ac])
e D, and Fy, transform covariantly under both SUSY and
gauge rotation
e Substitute D, — Dy and Fypy — Fuv:
non-SUSY Lagrangians — SUSY Lagrangians
(with gauge invariance)



Conclusionsl

e Construct X out of (¢, ¥g, Fp) C Pg

5 Yo oHX 5 272
A = — 73— (0O — V2KkXO K<\<0,, F
\/EKLFO Fo ( 1Po uo + I O)
e Linear SUSY theories reformulated into non-linear ones

e Goldstino field disappears in the process, reemerges in
the Jacobian and covariant derivatives

e Vertices with Goldstinos carry space-time derivatives

e Heavy ones can be integrated out, via e.o.m. or match-
ing, without breaking SUSY

e Constrained superfield reformuIaEed in terms of the
standard realization: X%, =0 — X = ¢/v2kF

e SUSY non-invariant theories can be prompted to non-
linearly invariant ones




‘Thank You!|



