Linear and Nonlinear Realizations of Supersymmetry

Mingxing Luo

Zhejiang Institute of Modern Physics Physics Department, Zhejiang University

Beijing

December, 2009

References

- H. Luo, ML, L. Wang, e-Print: arXiv:0911.2836
- H. Luo, ML, S. Zheng, e-Print: arXiv:0910.2110
- D. V. Volkov, V. P. Akulov, PLB46, 109 (1973)
- E. A. Ivanov, A. A. Kapustnikov, JPA11, 2375 (1978);
 JINR-E2-10765, Jun 1977; JPG8, 167(1982)
- S. Samuel, J. Wess, NPB221, 153 (1983)
- J. Wess, J. Bagger, SUSY/SUGRA, Chapters 11/26
- Z. Komargodski, N. Seiberg, e-Print: arXiv:0907.2441

Prelude

- Three Goldstino fields: linear/nonlinear/constrained
- Two pion fields: linear/nonlinear
- Superspace, linear/nonlinear realization of SUSY
- Reformulate linear SUSY into nonlinear ones
- Nonlinear Goldstino field out of linear superfield
- Constrained superfields
- Low energy effective theory
- Conclusions

Prelude-1

- Spontaneous breaking of global symmetries → massless Goldstone particles
- Strong interactions: pions

 spontaneous breaking of chiral symmetry
- Low energy physics of pions: nonlinear realization of chiral symmetry
 - Expansion in terms of energy-momentum

Prelude-2

- Goldstino: spontaneous breaking of global SUSY
- Supergravity: Goldstino is part of the massive gravitino
- \bullet $M_{
 m SUSY} \ll M_{
 m P}$: lower energy physics dominated by Goldstino
- Goldstino physics could be of importance at the TeV scale and tested in LHC
- Low energy physics of Goldstinos: linear SUSY/nonlinear SUSY/constrained superfields

Goldstino Field in O'Raifeataigh-like models

- Linear SUSY, chiral fields responsible for SSB
- Chiral super-multiplet $\Phi \sim (\phi, \psi, F)$

$$\delta_{\xi}\phi = \sqrt{2}\xi\psi,$$

$$\delta_{\xi}\psi_{\alpha} = \sqrt{2}F\xi_{\alpha} + i\sqrt{2}(\sigma^{\mu}\bar{\xi})_{\alpha}\partial_{\mu}\phi,$$

$$\delta_{\xi}F = i\sqrt{2}\bar{\xi}\bar{\sigma}^{\mu}\partial_{\mu}\psi.$$

The Goldstino field

- F-term in one $Φ_0$ develops a nonzero VEV $\langle F_0 \rangle$, SUSY is spontaneously broken
- Goldstino field ψ_0 : zero mass and changes as

$$\delta_{\xi}\psi_{0\alpha}=\sqrt{2}\langle F_0\rangle\xi_\alpha+\cdots$$

– If several F have nonzero VEVs, realignment can be made such that only Φ_0 has a nonzero VEV.

Goldstino Field in Nonlinear Realization of SUSY

Non-chiral version

$$\delta_{\xi}\lambda^{\alpha} = \frac{1}{\kappa}\xi^{\alpha} - i\kappa(\lambda\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\lambda})\partial_{\mu}\lambda^{\alpha}$$
$$\delta_{\xi}\bar{\lambda}_{\dot{\alpha}} = \frac{1}{\kappa}\bar{\xi}_{\dot{\alpha}} - i\kappa(\lambda\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\lambda})\partial_{\mu}\bar{\lambda}_{\dot{\alpha}}$$

Chiral version

$$\delta_{\xi}\tilde{\lambda}_{\alpha} = \frac{\xi_{\alpha}}{\kappa} - 2i\kappa\tilde{\lambda}\sigma^{\mu}\bar{\xi}\partial_{\mu}\tilde{\lambda}_{\alpha}$$

Conversion

$$\tilde{\lambda}_{\alpha}(x) = \lambda_{\alpha}(z), \quad z = x - i\kappa^2 \lambda(z) \sigma \bar{\lambda}(z)$$

Work of Komargodski/Seiberg-1

- Conservation equation: $\bar{D}^{\dot{\alpha}} \mathcal{J}_{\alpha \dot{\alpha}} = D_{\alpha} X$
- Supercurrent multiplet:

$$\mathcal{J}_{\mu} = j_{\mu} + \left[\theta^{\alpha} \left(S_{\mu\alpha} + \frac{1}{3}(\sigma_{\mu}\bar{\sigma}^{\rho}S_{\rho})_{\alpha}\right) + h.c.\right]$$

$$+ (\theta\sigma^{\nu}\bar{\theta}) \left(2T_{\nu\mu} - \frac{2}{3}\eta_{\nu\mu}T - \frac{1}{4}\epsilon_{\nu\mu\rho\sigma}\partial^{[\rho}j^{\sigma]}\right)$$

$$+ \frac{i}{2}\theta^{2}\partial_{\mu}\bar{x} - \frac{i}{2}\bar{\theta}^{2}\partial_{\mu}x + \cdots$$

$$X = x(y) + \sqrt{2}\theta\psi(y) + \theta^{2}F(y)$$

$$\partial^{\mu}T_{\mu\nu} = \partial^{\mu}S_{\mu\alpha} = 0 , T_{\mu\nu} = T_{\nu\mu} .$$

$$\psi_{\alpha} = \frac{\sqrt{2}}{3}\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{S}^{\dot{\alpha}}_{\mu}, F = \frac{2}{3}T + i\partial_{\mu}j^{\mu}, y^{\mu} = x^{\mu} + i\theta\sigma^{\mu}\bar{\theta}$$

Work of Komargodski/Seiberg-2

• SUSY spontaneously broken, the low-energy supercurrent in terms of the massless Goldstino G_{α}

$$S_{\mu\alpha} = \sqrt{2} f \sigma_{\mu\alpha\dot{\alpha}} \bar{G}^{\dot{\alpha}} + f'(\sigma_{\mu\nu})^{\beta}_{\alpha} \partial^{\nu} G_{\beta} + \cdots$$

- \bullet Low-energy Goldstino *not* accompanied by a massless scalar, the simplest bosonic state \sim two Goldstinos
- SUSY partners: one Goldstino $Q_{\dot{\alpha}}^{\dagger}|0\rangle\sim$ "two Goldstinos" $Q_{\dot{1}}^{\dagger}Q_{\dot{2}}^{\dagger}|0\rangle$
- ψ_{ϕ} creates a one Goldstino state $\phi \sim x$ creates a two Goldstino state

Work of Komargodski/Seiberg-3

• In combination with the SUSY algebra

$$X_{NL} = \frac{G^2}{2F} + \sqrt{2}\theta G + \theta^2 F, \quad X_{NL}^2 = 0$$

- Integrate out heavy fields by constraints
- ullet Coupling with superfields: spurion $Y o rac{m_{soft}}{f} X_{NL}$

$$\mathcal{L}_{soft} = -\int d^{4}\theta \left| \frac{X_{NL}}{f} \right|^{2} (m^{2})_{i}^{j} (Qe^{V}\bar{Q})_{j}^{i} + \int d^{2}\theta \frac{X_{NL}}{f} \left(-\frac{1}{2}B_{ij}Q^{i}Q^{j} + \frac{1}{6}A_{ijk}Q^{i}Q^{j}Q^{k} \right) + c.c.$$

$$\mathcal{L}_{soft} = \int d^4\theta \left| \frac{X_{NL}}{f} \right|^2 \xi D^{\alpha} W_{\alpha} + \int d^2\theta \frac{X_{NL}}{f} m_{\lambda} W_{\alpha} W^{\alpha} + c.c. ,$$

The Web of Relations

- ullet Relation between $ilde{\lambda}$ and ψ_0
 - $\tilde{\lambda}$ is closely related, but not identical, to ψ_0
 - $-\tilde{\lambda} \simeq \psi_0$ to the leading order, if $\kappa^{-1} = \sqrt{2} \langle F_0 \rangle$
- Construct $\tilde{\lambda}$ out of $(\phi_0, \psi_0, F_0) \subset \Phi_0$

$$\tilde{\lambda} = \frac{\psi_0}{\sqrt{2}\kappa F_0} - i \frac{\sigma^{\mu} \overline{\tilde{\lambda}}}{F_0} \left(\partial_{\mu} \phi_0 - \sqrt{2}\kappa \tilde{\lambda} \partial_{\mu} \psi_0 + \kappa^2 \tilde{\lambda}^2 \partial_{\mu} F_0 \right)$$

- Expressing X_{NL} in the language of nonlinear SUSY
- Comparison with the nonlinear/linear σ -model
 - $-\lambda \sim \vec{\pi}$
 - $-(\phi_0,\psi_0,F_0)\sim\phi_a$
 - $-X_{NL}^2 = 0 \sim \sum_a \phi_a^2 = \text{constant}$

Parallels: Pions as Goldstone Bosons-1

• Linear σ -model

- SO(4)-invariant Lagrangian of the linear σ -model

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi_{n}\partial^{\mu}\phi_{n} - \frac{\mathcal{M}^{2}}{2}\phi_{n}\phi_{n} - \frac{\lambda}{4}(\phi_{n}\phi_{n})^{2}$$

$$= -\frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}\sigma^{2}\sum_{n=1}^{4}\partial^{\mu}R_{n4}\partial_{\mu}R_{n4} - \frac{1}{2}\mathcal{M}^{2}\sigma^{2} - \frac{\lambda}{4}\sigma^{4}$$

$$\phi_{n}(x) = R_{n4}(x)\sigma(x), \quad R^{T}R = 1, \quad \sigma = \sqrt{\sum_{n}\phi_{n}^{2}}$$

- if \mathcal{M}^2 < 0, σ has a non-zero VEV

Parallels: Pions as Goldstone Bosons-2

• Nonlinear σ -model

Redefine the fields

$$\zeta_a \equiv \frac{\phi_a}{\phi_4 + \sigma}, \ \phi_a/\sigma = R_{a4} = \frac{2\zeta_a}{1 + \vec{\zeta}^2}, \ \phi_4/\sigma = R_{44} = \frac{1 - \vec{\zeta}^2}{1 + \vec{\zeta}^2}$$

$$R_{a4} = \frac{2\zeta_a}{1 + \vec{\zeta}^2} = -R_{4a}, \ R_{44} = \frac{1 - \vec{\zeta}^2}{1 + \vec{\zeta}^2}, \ R_{ab} = \delta_{ab} - \frac{2\zeta_a\zeta_b}{1 + \vec{\zeta}^2}$$

- Nonlinear σ -Lagrangian

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - 2\sigma^{2}\vec{D}_{\mu}\vec{D}^{\mu} - \frac{1}{2}\mathcal{M}^{2}\sigma^{2} - \frac{\lambda}{4}\sigma^{4}$$

$$\vec{D}_{\mu} \equiv \frac{\partial_{\mu}\vec{\zeta}}{1 + \vec{\zeta}^{2}}$$

Parallels: Pions as Goldstone Bosons-3

- Transformation rules in nonlinear σ -model
 - Isospin: $\delta \vec{\phi} = \vec{\theta} \times \vec{\phi}, \delta \phi_4 = 0$ $\delta \sigma = 0, \ \delta \vec{\zeta} = \vec{\theta} \times \vec{\zeta}, \ \delta \vec{D}_{\mu} = \vec{\theta} \times \vec{D}_{\mu}$
 - Axial isospin: $\delta \vec{\phi} = 2\vec{\epsilon}\phi_4$, $\delta \phi_4 = -2\vec{\epsilon} \cdot \vec{\phi}$ $\delta \sigma = 0$, $\delta \vec{\zeta} = \epsilon (1 - \vec{\zeta}^2) + 2\vec{\zeta}(\vec{\epsilon} \cdot \vec{\zeta})$, $\delta \vec{D}_{\mu} = 2(\vec{\zeta} \times \vec{\epsilon}) \times \vec{D}_{\mu}$
- Take $F = 2\langle \sigma \rangle$ and $\vec{\pi} \equiv F\vec{\zeta}$, (Set σ to its VEV, constraint: $\sum_a \phi_a^2 = \langle \sigma \rangle^2$)

$$\mathcal{L} = -\frac{F^2}{2} \vec{D}_{\mu} \vec{D}^{\mu} = -\frac{1}{2} \frac{\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}}{(1 + \vec{\pi}^2 / F^2)^2}$$

Superspace, Translations, Induced Realization

Superalgebra

$$\{\hat{Q}_{\alpha}, \bar{\hat{Q}}_{\dot{\alpha}}\} = -2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}, \quad \{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\} = 0, \quad \{\bar{\hat{Q}}_{\dot{\alpha}}, \bar{\hat{Q}}_{\dot{\beta}}\} = 0$$

• Supergroup element in superspace $(x, \theta, \bar{\theta})$

$$-G(x,\theta,\bar{\theta}) = \exp\left[i(-x^{\mu}P_{\mu} + \theta\hat{Q} + \bar{\theta}\bar{\bar{Q}})\right]$$

Multiplication

$$-G(0,\xi,\bar{\xi})G(x,\theta,\bar{\theta}) = G(x+i(\theta\sigma\bar{\xi}-\xi\sigma\bar{\theta}),\theta+\xi,\bar{\theta}+\bar{\xi})$$

• Translation in superspace

$$-x'=x+i(\theta\sigma\bar{\xi}-\xi\sigma\bar{\theta}),\;\theta'=\theta+\xi,\;\bar{\theta}'=\bar{\theta}+\bar{\xi}$$
 generated by $\xi Q+\bar{\xi}\bar{Q}$

$$Q_{\alpha} = \partial_{\alpha} - i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \quad \bar{Q}_{\dot{\alpha}} = -\partial_{\dot{\alpha}} + i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}$$

Linear Realization of SUSY

Induced linear realization of the superalgebra

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}, \quad \{Q_{\alpha}, Q_{\beta}\} = 0, \quad \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$$

- Change in sign, the order of multiplication reversed
- Superfield:

$$F(x,\theta,\bar{\theta}) = f(x) + \theta\phi(x) + \bar{\theta}\bar{\chi}(x) + \theta\theta m(x) + \bar{\theta}\bar{\theta}n(x) + \theta\sigma^{\mu}\bar{\theta}v_{\mu}(x) + \theta\theta\bar{\theta}\bar{\lambda}(x) + \bar{\theta}\bar{\theta}\theta\psi(x) + \theta\theta\bar{\theta}\bar{\theta}\bar{\theta}d(x)$$

• Linear transformation mixes different components

$$\delta_{\xi} F(x,\theta,\bar{\theta}) = (\xi Q + \bar{\xi}\bar{Q})F(x,\theta,\bar{\theta})$$

$$= \delta_{\xi} f(x) + \theta \delta_{\xi} \phi(x) + \bar{\theta} \delta_{\xi} \bar{\chi}(x) + \theta \theta \delta_{\xi} m(x) + \bar{\theta} \bar{\theta} \delta_{\xi} n(x)$$

$$+ \theta \sigma^{\mu} \bar{\theta} \delta_{\xi} v_{\mu}(x) + \theta \theta \bar{\theta} \bar{\delta}_{\xi} \lambda(x) + \bar{\theta} \bar{\theta} \theta \delta_{\xi} \psi(x) + \theta \theta \bar{\theta} \bar{\theta} \delta_{\xi} d(x)$$

Nonlinear Realizations of SUSY-1

• Induced nonlinear realization: $\theta \to \kappa \lambda(x)$

$$\lambda'(x') = \lambda(x) + \frac{1}{\kappa}\xi, \quad \bar{\lambda}'(x') = \bar{\lambda}(x) + \frac{1}{\kappa}\bar{\xi}$$

• Infinitesimal changes $\left[\mathbf{v}^{\mu}_{\xi}(x) = \kappa(\lambda\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\lambda})\right]$

$$\delta_{\xi}\lambda^{\alpha} = \frac{1}{\kappa}\xi^{\alpha} - iv_{\xi}^{\mu}(x)\partial_{\mu}\lambda^{\alpha}, \quad \delta_{\xi}\bar{\lambda}_{\dot{\alpha}} = \frac{1}{\kappa}\bar{\xi}_{\dot{\alpha}} - iv_{\xi}^{\mu}(x)\partial_{\mu}\bar{\lambda}_{\dot{\alpha}}$$

The SUSY algebra is closed

$$(\delta_{\eta}\delta_{\xi} - \delta_{\xi}\delta_{\eta})\lambda^{\alpha} = -2i(\eta\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\eta})\partial_{\mu}\lambda^{\alpha}$$

Matter fields

$$\delta_{\xi} f(x) = -i V_{\xi}^{\mu}(x) \partial_{\mu} f(x)$$
$$(\delta_{\eta} \delta_{\xi} - \delta_{\xi} \delta_{\eta}) f = -2i (\eta \sigma^{\mu} \bar{\xi} - \xi \sigma^{\mu} \bar{\eta}) \partial_{\mu} f$$

Nonlinear Realizations of SUSY-2

• Taking $(x', \; \theta', \; \bar{\theta}')$ as functions of $(x, \; \theta, \; \bar{\theta})$ $dx'^{\mu} = dx^{\mu} + id\theta \sigma^{\mu} \bar{\xi} - i\xi \sigma^{\mu} d\bar{\theta}$ $d\theta'^{\alpha} = d\theta^{\alpha}, \quad d\bar{\theta}'_{\dot{\alpha}} = d\bar{\theta}_{\dot{\alpha}}$

Define differentials

$$e^{\mu} = dx^{\mu} - id\theta \sigma^{\mu} \bar{\theta} + i\theta \sigma^{\mu} d\bar{\theta}$$
$$e^{\alpha} = d\theta^{\alpha}, \quad e_{\dot{\alpha}} = d\bar{\theta}_{\dot{\alpha}}$$

• $(x, \theta, \bar{\theta}) \to (x', \theta', \bar{\theta}')$, $e^{\mu} \to e'^{\mu}$ $e'^{\mu} = dx'^{\mu} - id\theta'\sigma^{\mu}\bar{\theta}' + i\theta'\sigma^{\mu}d\bar{\theta}' = e^{\mu}$

It is invariant.

Nonlinear Realizations of SUSY-3

- Akulov-Volkov Lagrangian
 - Substituting $\theta = \kappa \lambda$ and $d\theta = \kappa (\partial \lambda / \partial x^{\mu}) dx^{\mu}$ $e^{\mu} \rightarrow dx^{\nu} \left[\delta^{\mu}_{\nu} - i\kappa^{2} \partial_{\nu} \lambda \sigma^{\mu} \bar{\lambda} + i\kappa^{2} \lambda \sigma^{\mu} \partial_{\nu} \bar{\lambda} \right] = dx^{\nu} T^{\mu}_{\nu}$
 - A-V Lagrangian

$$\mathcal{L} = -\frac{1}{\kappa^2} det T$$

 $-\mathcal{L}$ changes by a total derivative

$$\delta_{\xi} \det \mathcal{T} = -i\kappa \partial_{\mu} \left[(\lambda \sigma^{\mu} \bar{\xi} - \xi \sigma^{\mu} \bar{\lambda}) \det \mathcal{T} \right]$$

 Any SUSY non-invariant theory can be prompted to an (nonlinearly) invariant one

(Low energy effective theory, later)

General linear super-multiplet

$$\Phi_k^{\sigma}(x,\theta,\bar{\theta}) = e^{-\kappa\lambda(x)Q - \kappa\bar{\lambda}(x)\bar{Q}} \Phi_k(x,\theta,\bar{\theta}) = \Phi_k(\tilde{x},\tilde{\theta},\bar{\tilde{\theta}})$$
$$\tilde{x} = x + i\kappa\lambda(x)\sigma\bar{\theta} - i\kappa\theta\sigma\bar{\lambda}(x)$$
$$\tilde{\theta} = \theta - \kappa\lambda(x), \quad \bar{\tilde{\theta}} = \bar{\theta} - \kappa\bar{\lambda}(x)$$

ullet All components of Φ_k^σ change as matter fields

$$\delta_{\xi} \Phi_{k}^{\sigma}(x, \theta, \bar{\theta}) = -i v_{\xi}^{\nu}(x) \frac{\partial}{\partial x^{\nu}} \Phi_{k}^{\sigma}(x, \theta, \bar{\theta})$$

• Generic action, linear

$$S_{gen} = \int d^4x d^4\theta \mathcal{L}_{gen} \times (\Phi_t(x,\theta), \Phi_k(x,\theta,\bar{\theta}), D_\alpha \Phi_k, D_\alpha D_\beta \Phi_k, ...)$$

Generic action, nonlinear

$$S_{gen} = \int d^4x d^4\theta Ber(x,\theta,\bar{\theta})$$

$$\times \mathcal{L}_{gen}(\Phi_t^{\sigma}(x,\theta,\bar{\theta}),\Phi_k^{\sigma}(x,\theta,\bar{\theta}),\triangle_{\alpha}\Phi_k^{\sigma},\triangle_{\alpha}\triangle_{\beta}\Phi_k^{\sigma},...)$$

$$Ber(x,\theta,\bar{\theta}) = \det T(x) \det M(x,\theta,\bar{\theta})$$

$$M^{\nu}_{\mu}(x,\theta,\bar{\theta}) = \delta^{\nu}_{\mu} + i\kappa \nabla_{\mu}\lambda(x)\sigma^{\nu}\bar{\theta} - i\kappa\theta\sigma^{\nu}\nabla_{\mu}\bar{\lambda}(x)$$

• Covar. derivatives: $\nabla^{\nu} = (T^{-1})^{\nu}_{\rho} \partial^{\rho}$, $\triangle_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} + i(\sigma_{\mu} \bar{\theta})_{\alpha} \triangle^{\mu}$

$$\triangle^{\mu} = (M^{-1})^{\mu}_{\nu} \left(\nabla^{\nu} + \nabla^{\nu} \lambda(x) \frac{\partial}{\partial \theta} + \nabla^{\nu} \bar{\lambda}(x) \frac{\partial}{\partial \bar{\theta}} \right)$$

• Chiral superfield Φ_t

$$\Phi_{t}(x,\theta,\bar{\theta}) = \exp\left(i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\right)S_{t}(x,\theta)$$

$$\Phi_{t}^{\sigma}(x,\theta,\bar{\theta}) = L^{+}(\partial/\partial x,\partial/\partial\theta)S_{t}^{\sigma}(x,\theta)$$

$$S_{t}^{\sigma}(x,\theta) = S_{t}\left(\tilde{x}^{+},\tilde{\theta}\right)$$

$$\tilde{x}^{+} = x - 2i\kappa\theta\sigma\bar{\lambda}(x) + i\kappa^{2}\lambda(x)\sigma\bar{\lambda}(x)$$

$$L^{+}(\partial/\partial x,\partial/\partial\theta) = 1 + i\theta\sigma^{\mu}\bar{\theta}\Delta_{\mu}^{+} + \frac{1}{4}\theta^{2}\bar{\theta}^{2}\Delta_{\mu}^{+}\Delta^{\mu+}$$

$$M^{+\nu}_{\mu}(x,\theta) = \delta_{\mu}^{\nu} - 2i\kappa\theta\sigma_{\mu}\nabla^{\nu}\bar{\lambda}, \quad \Delta_{\alpha}^{+} = \frac{\partial}{\partial\theta^{\alpha}} + i(\bar{\theta}\sigma^{\mu})_{\alpha}\Delta_{\mu}^{+},$$

$$\Delta^{+\mu} = (M^{-1}_{+})^{\mu}_{\nu}\left(\nabla^{\nu} + \nabla^{\nu}\lambda(x)\frac{\partial}{\partial\theta}\right)$$

Chiral part of the action, linear

$$S_{ch} = \int d^4x \left(d^2\theta \mathcal{L}_{ch}(S_t(x,\theta)) + C.C \right)$$

Chiral part of the action, nonlinear

$$S_{ch} = \int d^4x \left(d^2\theta Ber^+(x,\theta) \mathcal{L}_{ch}(S_t^{\sigma}(x,\theta)) + C.C \right)$$
$$Ber^+(x,\theta) = \det T(x) \det M^+(x,\theta)$$

From Linear to Nonlinear SUSY: Recapture

Linear superfields to nonlinear ones

$$\Omega^{\sigma} = \exp \left[-\kappa \left(\lambda Q + \bar{\lambda} \bar{Q} \right) \right] \Omega$$

• SUSY transformation rules for Ω^{σ}

$$\delta_{\xi}\Omega^{\sigma} = -i(\lambda \sigma^{\mu} \bar{\xi} - \xi \sigma^{\mu} \bar{\lambda}) \partial_{\mu}\Omega^{\sigma}$$

- ullet All component fields in Ω^{σ} transform into themselves
- Any of them can be integrated out without breaking SUSY, via e.o.m. (tree level) or matching (QM), producing high dimensional operators
- Extremely heavy ones: set to zero directly
- Whether and how to integrate out a field are dynamical questions

Construct the Nonlinear Goldstino Field λ

• Generic OR model: $(\Phi_0 \to S_0 \text{ by ridding of } i\theta\sigma\bar{\theta})$ $S_0(x,\theta) = \phi_0(x) + \sqrt{2}\theta\psi_0(x) + \theta^2F_0(x)$

- Essential: $\langle F_0 \rangle \neq 0$
- The corresponding nonlinear super-multiplet

$$S_0^{\sigma} = S_0(x - 2i\kappa\theta\sigma\bar{\lambda}(x) + i\kappa^2\lambda(x)\sigma\bar{\lambda}(x), \theta - \kappa\lambda(x))$$

• Construct λ out of the components of S_0 : demanding ψ_0^σ to vanish and re-express λ in terms of $\tilde{\lambda}$

$$\tilde{\lambda} = \frac{\psi_0}{\sqrt{2}\kappa F_0} - i \frac{\sigma^{\mu} \overline{\tilde{\lambda}}}{F_0} \left(\partial_{\mu} \phi_0 - \sqrt{2}\kappa \tilde{\lambda} \partial_{\mu} \psi_0 + \kappa^2 \tilde{\lambda}^2 \partial_{\mu} F_0 \right)$$

• The analog of representing $\vec{\pi}$ in terms of ϕ_a in σ -models

Comments on the Construction

- Taking $\kappa^{-1} = \sqrt{2} \langle F_0 \rangle$: $\tilde{\lambda} \simeq \psi_0$ to the leading order
- $\tilde{\lambda}$ (λ) transforms properly
- $\psi_0^\sigma=0$ in $\Phi_0^\sigma=\exp\left[-\kappa\left(\lambda Q+\bar\lambda \bar Q\right)\right]\Phi_0$ when this λ is used, it is realized by the definition of λ
- ullet ψ_0 cannot be dropped by the reasoning of dynamics for it's not heavy, it is actually massless
- Feasibility due to the SUSY algebras
- \bullet Can always construct a λ for any chiral super-multiplet, but cannot be used to separate the Goldstino field from the others

From Linear to Nonlinear Lagrangians

- ullet Standard procedure, with *this* definition of λ
- No explicit form of λ is needed, the key element is $\psi_0^\sigma=0$, which is all needed
- In the process, the Goldstino field disappears from the original Lagrangian, but reemerges in the Jacobian of the transformation and covariant derivatives
- Vertices with Goldstino fields carry at least one spacetime derivative, as one would have expected
- All fields are kept, heavy ones can be integrated out, via e.o.m. or matching

Mass Spectrum in Nonlinear Lagrangians

- Space-time derivatives are not allowed in potential terms,
 Goldstino field is absent in the nonlinear version
- Potential terms in the nonlinear version

$$\int d^4x (d^2\theta W(S_t^{\sigma}, S_0^{\sigma}) + h.c.)$$

The same structure as the linear version

$$\int d^4x (d^2\theta W(S_t, S_0) + h.c.)$$

 ψ_0 is massless: no bilinear terms $\psi_0\psi_0$ or $\psi_0\psi_i$

• The mass spectrum is not changed by going from the linear version to nonlinear one by setting $\psi_0^{\sigma}=0$

Construction of the Goldstino field in F-I models

Abelian gauge field

$$V = D\theta^2 \bar{\theta}^2 + \chi \theta \bar{\theta}^2 + \bar{\chi} \bar{\theta} \theta^2 + \cdots$$

- ullet Non-zero VEV for D o SUSY spontaneously broken
- \bullet χ : massless, the Goldstino field
- Define a nonlinear Goldstino field λ by demanding $\chi^{\sigma}=$ 0 in nonlinearly realized super-multiplet V^{σ}
- Problems about gauge and supergravity

- ullet Goldstino field in a linearly chiral superfield X_{NL}
- $X_{NL}^2 = 0$, to rid of the scalar component
 - Supersymmetry structure and its breaking

$$-X_{NL} = \frac{G^2}{2F} + \sqrt{2}\theta G + \theta^2 F$$

• Define $\lambda^{NL} = G/\sqrt{2}\kappa F$

$$\delta_{\xi} \lambda_{\alpha}^{NL} = \frac{\xi_{\alpha}}{\kappa} - 2i\kappa \lambda^{NL} \sigma^{\mu} \bar{\xi} \partial_{\mu} \lambda_{\alpha}^{NL}$$

- ullet λ^{NL} transforms in exactly the same way as $ilde{\lambda}$
- $\lambda^{NL} = \tilde{\lambda}$ and $X_{NL} = F\Theta^2$, $\Theta = \theta + \kappa \tilde{\lambda}$

- Self consistent check:
 - $-X_{NL}^{\sigma} = \theta^2 F^{\sigma}$
 - $-\lambda$ disappears in the nonlinearly realized super-multiplet
- Reverse the logic
 - For any chiral superfield $\Phi = \phi + \sqrt{2}\theta\psi + \theta^2F$ define $\lambda^{\Phi} = \psi/\sqrt{2}\kappa F$

$$\delta_{\xi}\lambda_{\alpha}^{\Phi} = \frac{\xi_{\alpha}}{\kappa} - 2i\kappa\lambda^{\Phi}\sigma^{\mu}\bar{\xi}\partial_{\mu}\lambda_{\alpha}^{\Phi} + \frac{i}{\kappa F}(\sigma^{\mu}\bar{\xi})_{\alpha}\partial_{\mu}\left(\phi - \frac{\psi^{2}}{2F}\right)$$

– Demanding λ^{Φ} to transform in the same way as that of $\tilde{\lambda}$, one obtains $\phi = \psi^2/2F$ and $\Phi^2 = 0$

 \bullet Prompt λ to a linear superfield

$$\Lambda(\lambda) = \exp(\theta Q + \bar{\theta}\bar{Q}) \times \lambda$$

• Construct two chiral fields out of Λ and $\bar{\Lambda}$

$$\Phi_2 = -\frac{1}{4}\bar{D}^2 \wedge \wedge, \quad \Phi_4 = -\frac{1}{4}\bar{D}^2 \wedge \wedge \bar{\wedge} \bar{\wedge}.$$

$$\Phi_2 = f_2(\lambda)\Theta^2, \quad \Phi_4 = f_4(\lambda)\Theta^2,$$

- f_2 , f_4 : definite functions of λ
- f_4 : the AV Lagrangian up to an overall constant and possible total derivative terms
- f_4/f_2 and F/f_2 transform as matter fields

Some history:

$$\Phi_4 \bar{D}^2 \bar{\Phi}_4 \sim \Phi_4$$

while Φ_2 does not have such relation

- The rationale to choose Φ_4 instead of Φ_2 to be the superfield for Goldstino
- They differ only by a matter field in the standard realization
- Obvious in retrospect, since $\Phi_2^2 = \Phi_4^2 = 0$, the same form of factorization

- Real superfield $V_4 = \Lambda^2 \bar{\Lambda}^2$
- $V_4^2 = 0$ and $V_4 = f_4(\lambda) \Theta^2 \bar{\Theta}^2$, $\Theta = \theta + \kappa \lambda$
- \bullet f_4 : the AV Lagrangian up to an overall constant and possible total derivative terms
- \bullet $V^2=0$ cannot be preserved under a general gauge transformation
- For any $V = D\theta^2\bar{\theta}^2 + \chi\theta\bar{\theta}^2 + \bar{\chi}\bar{\theta}\theta^2 + \cdots$
 - Define $\lambda^V = \chi/2\kappa D$

$$\delta_{\xi}\lambda_{\alpha}^{V} = \frac{\xi_{\alpha}}{\kappa} - i(\lambda^{V}\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\lambda}^{V})\partial_{\mu}\lambda_{\alpha}^{V} + \frac{i}{D} \text{(total derivatives)}$$

- Demanding λ^V to transform in the same way as that of λ , one gets $V=D\Theta^2\bar{\Theta}^2$
- $-D/f_4$ transforms as a matter field

• The constraint to rid of the scalar component in a chiral superfield, $Q_{NL}=\phi_q+\sqrt{2}\theta\psi_q+\theta^2F_q$

$$X_{NL}Q_{NL} = 0$$

From which, one gets

$$\phi_q = \frac{\psi_q G}{F} - \frac{G^2}{2F^2} F_q$$

• Equivalent to the constraint $\phi^{\sigma} = 0$

 \bullet Prompt λ and matter fields to linear super-multiplets

$$\Lambda(\lambda) = \exp(\theta Q + \bar{\theta}\bar{Q}) \times \lambda$$
$$\Omega(\lambda) = \exp(\theta Q + \bar{\theta}\bar{Q}) \times \varphi$$

SUSY non-invariant action → SUSY invariant one

$$\int d^4x L(\partial_{\mu}\varphi,\varphi)$$

$$\kappa^4 \int d^4x d^4\theta \wedge \wedge \bar{\Lambda} \bar{\Lambda} L(\partial_{\mu}\Omega, \Omega)$$

•
$$\Lambda(x) = \kappa^{-1}\theta' = \kappa^{-1}\theta + \lambda(z)$$

 $\Omega(x) = \varphi(z), \ z = x - i\kappa\lambda(z)\sigma\bar{\theta} + i\kappa\theta\sigma\bar{\lambda}(z)$

- Integrate out the Grassmann variables: $(x,\theta) \to (z,\theta')$ $S=\int d^4x (\det T) \ L(\nabla_\mu \varphi,\varphi)$
- ullet Same results by changing $\partial_{\mu} o
 abla_{\mu}$ and inserting det ${\mathcal T}$
- S is invariant under nonlinear SUSY transformations
- Integrations over the Grassmann variables can always be carried out in a similar manner for arbitrary functionals of Λ and Ω \rightarrow extra operators for effective theories

- Subtleties for gauge theories
- Wess-Zumino gauge, starting with the transformation

$$\delta_{\xi} A_{\mu} = -i\chi \sigma_{\mu} \bar{\xi} + i\xi \sigma_{\mu} \bar{\chi}$$

$$\delta_{\xi} \chi_{\alpha} = \sigma^{\mu\nu} \xi_{\alpha} F_{\mu\nu} + i\xi D$$

$$\delta_{\xi} D = -D_{\mu} \chi \sigma^{\mu} \bar{\xi} - \xi \sigma^{\mu} D_{\mu} \bar{\chi}$$

- $D_{\mu} = \partial_{\mu} iA_{\mu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} i\partial_{\nu}A_{\mu} i[A_{\mu}, A_{\nu}]$
- Construct four superfields $V_{\mu} = \exp(\theta Q + \bar{\theta}\bar{Q}) \times A_{\mu}$
- Four nonlinearly realized superfields

$$\hat{V}_{\mu} = \exp\left[-\kappa(\lambda Q + \bar{\lambda}\bar{Q})\right] \times V_{\mu} = \hat{A}_{\mu} + i\theta\sigma_{\mu}\bar{\hat{\chi}} - i\hat{\chi}\sigma_{\mu}\bar{\theta} + \cdots$$

ullet Transformation rules of \widehat{A}_{μ}

$$\delta_{\xi} \hat{A}_{\mu} = -i\kappa v_{\xi}^{\nu} \hat{F}_{\nu\mu}$$

$$\widehat{F}_{\mu\nu} = \partial_{\mu}\widehat{A}_{\nu} - i\partial_{\nu}\widehat{A}_{\mu} - i[\widehat{A}_{\mu}, \widehat{A}_{\nu}]$$

This can be rewritten as

$$\delta_{\xi} \widehat{A}_{\mu} = -i\kappa v_{\xi}^{\nu} \partial_{\nu} \widehat{A}_{\mu} - i\kappa \partial_{\mu} v_{\xi}^{\nu} \widehat{A}_{\nu} + D_{\mu} (i\kappa v_{\xi}^{\nu} \widehat{A}_{\nu})$$

- The last term can be compensated by a gauge transformation of the parameter $-i\kappa v_{\xi}^{\nu}\widehat{A}_{\nu}$
- Under this combination of SUSY and gauge transformations

$$\delta'_{\xi} \widehat{A}_{\mu} = -i\kappa v_{\xi}^{\nu} \partial_{\nu} \widehat{A}_{\mu} - i\kappa \partial_{\mu} v_{\xi}^{\nu} \widehat{A}_{\nu}$$

Define

$$\mathcal{D}_{\mu} = (T^{-1})^{\nu}_{\mu} D_{\nu} = (T^{-1})^{\nu}_{\mu} (\partial_{\nu} - iA_{\nu})$$
$$\mathcal{F}_{\mu\nu} = (T^{-1})^{\rho}_{\mu} (T^{-1})^{\sigma}_{\nu} (\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho} - i[A_{\rho}, A_{\sigma}])$$

- \mathcal{D}_{μ} and $\mathcal{F}_{\mu\nu}$ transform covariantly under both SUSY and gauge rotation
- Substitute $D_{\mu} \to \mathcal{D}_{\mu}$ and $F_{\mu\nu} \to \mathcal{F}_{\mu\nu}$: non-SUSY Lagrangians \to SUSY Lagrangians (with gauge invariance)

Conclusions

• Construct $\tilde{\lambda}$ out of $(\phi_0, \psi_0, F_0) \subset \Phi_0$

$$\tilde{\lambda} = \frac{\psi_0}{\sqrt{2}\kappa F_0} - i \frac{\sigma^{\mu} \bar{\lambda}}{F_0} \left(\partial_{\mu} \phi_0 - \sqrt{2}\kappa \tilde{\lambda} \partial_{\mu} \psi_0 + \kappa^2 \tilde{\lambda}^2 \partial_{\mu} F_0 \right)$$

- Linear SUSY theories reformulated into non-linear ones
- Goldstino field disappears in the process, reemerges in the Jacobian and covariant derivatives
- Vertices with Goldstinos carry space-time derivatives
- Heavy ones can be integrated out, via e.o.m. or matching, without breaking SUSY
- Constrained superfield reformulated in terms of the standard realization: $X_{NL}^2=0 \to \tilde{\lambda}=\psi/\sqrt{2}\kappa F$
- SUSY non-invariant theories can be prompted to nonlinearly invariant ones

Thank You!