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Motivation: towards two-loop numerical calculation

e Aim to O(1%) precision for LHC processes = Automation of two-loop calculation

e Higher-order calculations are usually performed in D dimension to regularise divergences in Feyn-

man integrals, but D-dim vector cannot be implemented in a numerical program.

e Automated numerical calculation requires the numerator of loop integrand constructed in 4-dim,
e.g. OpenlLoops 2 [Buccioni et al., 19'] at one-loop level.

e Rational terms originates from discrepancy between 4- and D-dim numerator in loop integrands
= one loop: rational terms of type Ry [Ossola, Papadopoulos, Pittau, Garzelli et al., 08, 09’ ]

= in this talk: general method for two-loop UV rational terms
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Introduction to one-loop rational terms

Amplitude of one-loop diagram ~ in D = 4 — 2= dimension in HV scheme

N(q . _ _
) with  Dy.(q1) = (a1 + pi)” — mj;

A, = QE/dm - —,
Ly i Dy(q1)---Dn—1(q1)

Rational term emerges by splitting numerator into 4-dim and e-dim parts

) N q = q+q
N(q) = N(q)+N(q), with o= At
ghv = g 4 ghv

leads to
ALy Ayt Ry,
—— ——
compute compute
numerically analytically

e 0R, N from interplay between e-dim A and % UV pole. = requires technique to extract UV pole



Tadpole decomposition [Chetyrkin, Misiak, Miinz, 98", Zoller, 14']

The UV divergence can be captured by massive tadpole decomposition of denominators

1 1 L Arl@pr) 1
Dy(q1) ¢ — M? ¢ — M? Di(q1)
N—— ~ -~ s

leading UV term subleading UV term
O(1/43) O(1/q})
with
AL(q = p22g- 2 M2
ka1, i) Py — 241 pr +my,

Apply recursively to obtain tadpole expansion up to order (1/@1)X+2

X
1
— = tadpoles 4+ UV-finite remainder
Dr(q1) ;)

V.

expansion



Tadpole decomposition

Decomposition of tensor integral with degree of divergence X

L eri” ) @{LT o o
L /dQ1 ; - R
N DOq)---DN=Yq) 2 =

expansion remainder

~H1 A(U)<—
Ml My _q q1, pk)
z [t

simple IR finite tadpole integrals

Define K operator that extracts the pole part

TPy DT 1
KTJ/\J}l oy _ KSX T]’L\Lfl for x g
uv poTerof TN




Rational terms from UV singularities

Define the K operator that extracts full pole contribution

<A1 VR 0 L YA ji1-fi
KA, = ) N, KT =3 (N + Nipgeos,) KSx TN
— - > " UV pole

tensorial decomposition

splitting into
KA1>7 — _52177—'_ 5721/7
—— N~

M_S pole rationa|

* 'R, y and 07 , from same UV singularity of Ty = 0R, N local counterterm like 07 y

o 0R, N is NOT a finite renormalisation of fields and couplings in bare Lagrangian, e.g. there is a

rational term of 4-photon vertice.



One-loop subdiagram with D-dim external loop momenta
One-loop diagram with 4-dim ¢o:

Di(@, ) = (G1+@)=d +2q1- 2+ Q§
4—zirim

One-loop subdiagram with D-dim ¢y = ¢o + ¢o:

Di(q, @) = Dplq, @)+ 2q- @+ ¢)

\ 4
"~

e-dim

= extra term of order cj%/e’:‘ contributes to two loops

(see later) = rational structure changes



Subdiagram with D-dim external momentum ¢, and 4-dim numerator

Tadpole expansion

S 1 B 1 +—(Q2+§2)2—2§1'(92+6]2)—M2
X — ~\2 _ -9 . M2 ) - M2 9 + .o
(@1 + @+ @) q (a3 )
Contribution to UV pole
E —Nl —[y (U) = ~
2 4 q A a2+ @)
“1 KAY (@) = Z iy /d 1 : N+to
(ql - MQ)

Q1£
o s g ~
= =027 (@) —0Z1,(q)
QQT N N~ - N v~ o
MS pole extra pole
new rational part

o 5Ziv<@) is non-vanishing only in quadratic divergent subdiagrams, and has the form

021 4(@p) o« = = 0(1)



Renormalised one-loop subdiagrams

Subtract poles and rational terms, we can identify amplitudes with D-dim and 4-dim numer-

ator
AT (@) ~ K AL (@) = AL (@) — KAL (g) +O(e, §)
T Ddim fulleabtraction T idim ful eabtraction
Recall
KA (@) = —621,(@) + R, (a2) + Ofe)
KAS (@) = —02% (q2) — 021 (o)

= Renormalised one-loop amplitude

AL (@) + 028 (@) = AT, (a2) + 027 ,(a2) + 0214 (Go) + ORT ,(g2) +O(e. §)

D-dim renormalisation 4-dim renormalisation rational parts
compute numerically




Renormalisation of irreducible two-loop diagrams

Renormalisation of D-dim amplitude of diagram I' with R operation [Caswell and Kennedy, 82’

R/_lg’r = /—lg’p—i— 521 ’ ~/_l17p -+ 5ZQF
« Vi ryﬁ )
Vi g —~
subdivergences local two-loop
divergence

Example: QED vertex (D € {D, 4} be the numerator dimension)

RAyp w<<§ w<§;wm w@<azzp
D,=D
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Structure of two-loop UV rational terms (Ansatz)

Relation between renormalised amplitude in D, = D and D, = 4:

RAyr = Ayp+ Y (0214, +021 5 +0R ) - A pyy + (0251 +0Ry 1) +O(e)

N\ J/

Vi "~ v
subdivergences local two-loop
divergence

Example: QED vertex

R A, = @ + w<§(5zm + 0Z,, +0R,, )+ m@<(5Z27F +O0R,p)|  +Ofe)
| extended ra’c?gnal insertion

1D, =4
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Two-loop diagrams without global divergence (Proof)

No global divergence = at most one subdivergence to be subtracted

RAQ,F = (AL% + 521;%) : Alf/% <~ eg. 3% + 3 5Z17%
o - 9 ~——
(a) UV pole subtracted (b) no divergence s s
— (A + 8710, + 0715, +0Ry ) - Ay ) +O(E)
with 4—din?rnumerator
— Ao p ot (0715, + 071, + Ry ) - Ay g + O(E)

Hence we prove

two-loop 0Rop = 0 and 02, = 0

= only globally divergent two-loop diagrams contribute to 0R, 1~ and 07, -

= finite set of 5R2 r and 5Z2 r counterterms in renormalisable theories
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Two-loop diagrams with global divergence (Proof)

Isolates all divergences from three chains of loop momenta ¢; into tadpoles

Aoy = \(S%HF()Q) (S%+F%) (s§;+F§;) Ayr

7

gi-denominators  go-denominators 43 =q1 + q
T -denominators
_ g g 4 _ :
= SX18X28X3 Ao+ non-global divergent terms

tadpoles flzptad
one master integral F'(1,1,1)
where Sg?, := tadpole expansion of ¢;-dependent denominators that captures related sub- and global-
[

divergences.

e Only "simple" tadpoles A, Lo contributes to two-loop /R, - & 07, -
Y a Y Y

= polynomial in external momenta and masses (upon subdivergence subtraction)
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Calculations of two-loop rational terms

For practical calculation in terms of tadpoles (recasting Ansatz)

T I CERES St P
Dn=D

- [H S()g AQ,F + Z (521,% + 521,%‘ + 5731,%.) ' (SE?Z-ALF/%)]

i=1 i=1 D=4

Example: QED vertex

ORor = H S Z)z ™ SX1 %Q Ly
1=1 1p_p
3 _
1 1 >,
s &3<§<5zm+azm+mem>
1=1
1 D=4




QED two-loop rational terms in MS scheme (¢ = 0, m = 0)

Calculating in GEXCOM [Chetyrkin,Zoller] framework: QGRAF [Noguira] —Q2E+EXP [Seidesticker, Harlan-
der, Steinhauser] —FORM [Vermaseren| code —MATAD [Steinhauser]

o® (191 247
R SRy, =i o
2e = 672 (18 = 108) p

21 71 11
y SRHY — oV v, 2 <5 177
AR b =i [(pp g p)(gg 18) +9 ( 12p)]

2 131 191
oo @
umxx< ORser = 167627 (3 e 2—7)

053

Rouy = 17— (=3)(¢"9" +4"9" + ¢"7g"")
’ (0

® 0R, r are polynomial in p and independent of auxiliary tadpole mass M =- local counterterm
(Full results with R¢ gauge and electron mass dependence in upcoming paper)
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Summary

e Renormalised D-dim two-loop amplitude can be reconstructed by amplitude with 4-dim

numerator

3
RAyp = Ayp+ Y (07140621, +0R ) - A p) +(0Zyp+0Ry 1) + Oe).
1=1

= numerical implementation in automated tools becomes possible.

e We provide a generic method to compute )R, - from one-scale tadpoles, and show that
0R, p is local counterterm.

e Full set of QED rational terms at two loops.
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Backup
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A brief introduction to OpenLoops 2 [ArXiv:1907.13071]

OpenLoops is a fully automated numerical tool for tree and one-loop amplitudes computation.

e Download at  https://openloops.hepforge.org

e Full NLO QCD and EW corrections available
More than 200 processes libraries available for all relevant SM processes (+HEFT)

Additional libraries provided upon user requests

e Fast CPU performance and excellent numerical stability

18


https://openloops.hepforge.org

Applications of OpenLoops 2

e Interfaces to many Monte Carlo programs
Sherpa [Hoche, Krauss, Schonherr, Siegert et al.]
I\/Iunich/l\/latrix [Grazzini, Kallweit, Rathlev, Wiesemann]
NNLOJET [Currie, Chen, Gehrmann, Glover, Huss et al ]|
Powheg [Nason, Oleari et al.], Herwig [Gieseke, Platzer et al ]
Geneva [Alioli, Bauer, Tackmann et al.|, Whizard [Kilian, Ohl, Reuter et al.]

e OpenlLoops 2 applications (2019)
NNLO QCD + NLO EW Vector-boson pair production [Grazzini, Kallweit, Lindert, Pozzorini, Wiesemann]
NNLO QCD Three-photon production [Chawdhry, Czakon, Mitov, Poncelet]
NNLO QCD Spin correlations in ¢t production [Behring, Czakon, Mitov, Papanastasiou, Poncelet]
NLO QCD tfb%—jet production [Buccioni, Kallweit, Pozzorini, Zoller]
and more NNLO QCD results to appear with Matrix and NNLOJET collaborations
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Why OpenLoops 2 is used at NNLO? = fast and accurate

OpenlLoops 2 implements on-the-fly reduction [Buccioni, Pozzorini, Zoller, 18'] that unifies amplitude

constructions and reductions in a single recursion

independent

A A :
rank7 n=1 ;Z; cients processes # diagrams | t [s] per PSP
o) Opentooms | o g9 — ttgg ~ 9 x 10° 0.60
i L6 g9 — ttggg ~ 160 x 10° 21.15
) -0 utt — ttgg ~ 1.6 x 10° 0.07
3 Openlpops 2 a5 ut — ttggg ~ 25 x 107 2.08
0 15 wii — WTW=gg | ~1x 10 0.15
1 = ut — WTW=ggg | ~ 13 x 10° 3.66
=
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Why OpenlLoops 2 is used at NNLO? = fast and accurate

Numerical instabilities arise form reduction methods for evaluation of coefficients of master inte-

grals, which can have large cancellations due to spurious singularities.

Source of instabilities are the inverse of small rank-2 & rank-3 Gram determinants in critical

kinematical regions (both hard and infrared regions)

Solutions: on-the-fly stability system
e Analytical: Any-order triangle diagram expansion (reduction + master integral expansion)

e Numerical: Hybrid precision framework (double + quadruple precision)
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OpenlLoops 2 stability

2 — 3 process: Real-Virtual contribution (NNLO) with collinear gluon pair (é.o = 92-2]-)

gcoll

intial-state collinear radiation in gg — ttg at O(a?l)

accuracy A

- OL1+CutTools dp
i ¢ _—— OL1+Collier dp
B ° o = OL2 hp mode 2
—
< OL2gp
- —_—— o ®
L — o &
- —_— . ®
- —_— R =
- —_— . ®
- —_— . ®
L —_———
—36 —-32 —28 —24 —20 —16 —12 -8 —4 0 4 8




One-loop subdiagram example: photon self-energy

Let Dy, € {D, 4} be the dimension of numerator, we have

DD:>K/

and

D=4 = K/d‘_

—Tl” Vmgﬂ%(% + ﬁz)]

G (1 + @)?

Tr algﬂ%(% + gQ)]

G (G + @+ G2)?

= Renormalised photon self-energy insertion:

ay

5Zl,y(q_2)

Qg

(%1

_|_

1 4 ~2 0y
(\ 3((1 g

~60Z, (@) 57317(@) 0

1 4 2 oo o7 pNe? 2 ~2
5(\3@9 — 45"¢5?) S0 9

_521,7(%) _52177/@2)

ay

(521,7(92) + 521,7(@2) + 5R1,7<QZ))

Qg
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