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Motivation: towards two-loop numerical calculation

• Aim to O(1%) precision for LHC processes ⇒ Automation of two-loop calculation

• Higher-order calculations are usually performed in D dimension to regularise divergences in Feyn-
man integrals, but D-dim vector cannot be implemented in a numerical program.

• Automated numerical calculation requires the numerator of loop integrand constructed in 4-dim,
e.g. OpenLoops 2 [Buccioni et al., 19’] at one-loop level.

• Rational terms originates from discrepancy between 4- andD-dim numerator in loop integrands
⇒ one loop: rational terms of type R2 [Ossola, Papadopoulos, Pittau, Garzelli et al., 08’, 09’ ]

⇒ in this talk: general method for two-loop UV rational terms
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Introduction to one-loop rational terms

Amplitude of one-loop diagram γ in D = 4− 2ε dimension in HV scheme

Ā1,γ = µ2ε
∫

dq̄1
N̄ (q̄1)

D0(q̄1) · · ·DN−1(q̄1)
, with Dk(q̄1) = (q̄1 + pk)2 −m2

k

Rational term emerges by splitting numerator into 4-dim and ε-dim parts

N̄ (q̄1) = N (q1) + Ñ (q̄1) , with

 q̄ = q + q̃
γ̄µ̄ = γµ + γ̃µ̃

ḡµ̄ν̄ = gµν + g̃µ̃ν̃

leads to

Ā1,γ = A1,γ︸︷︷︸
compute

numerically

+ δR1,γ︸ ︷︷ ︸
compute

analytically

• δR1,γ from interplay between ε-dim Ñ and 1
ε UV pole. ⇒ requires technique to extract UV pole
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Tadpole decomposition [Chetyrkin, Misiak, Münz, 98’, Zoller, 14’]

The UV divergence can be captured by massive tadpole decomposition of denominators
1

Dk(q̄1)
= 1

q̄2
1 −M2︸ ︷︷ ︸

leading UV term
O(1/q̄2

1)

+ ∆k(q̄1, pk)
q̄2

1 −M2
1

Dk(q̄1)︸ ︷︷ ︸
subleading UV term

O(1/q̄3
1)

with
∆k(q̄1, pk) = − p2

k − 2 q̄1 · pk + m2
k −M

2

Apply recursively to obtain tadpole expansion up to order (1/q̄1)X+2

1
Dk(q̄1)

=
X∑
σ=0

tadpoles︸ ︷︷ ︸
expansion

+ UV-finite remainder
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Tadpole decomposition

Decomposition of tensor integral with degree of divergence X

T
µ̄1···µ̄r
N =

∫
dq̄1

q̄
µ̄1
1 · · · q̄

µ̄r
1

D0(q̄1) · · ·DN−1(q̄1)
= SX T

µ̄1···µ̄r
N︸ ︷︷ ︸

expansion

+ FX T
µ̄1···µ̄r
N︸ ︷︷ ︸

remainder

UV divergent part is fully isolated in tadpoles

SX T
µ̄1···µ̄r
N =

X∑
σ=0

∫
dq̄1

q̄
µ̄1
1 · · · q̄

µ̄r
1 ∆(σ)(q̄1, pk)(

q̄2
1 −M2)N+σ︸ ︷︷ ︸

simple IR finite tadpole integrals

Define K operator that extracts the pole part

KT
µ̄1···µ̄r
N︸ ︷︷ ︸

UV pole of TN

= K SX T
µ̄1···µ̄r
N ∝ 1

ε
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Rational terms from UV singularities

Define the K̄ operator that extracts full pole contribution

K̄ Ā1,γ :=
∑
r

N̄µ̄1···µ̄r KT
µ̄1···µ̄r
N︸ ︷︷ ︸

tensorial decomposition

=
∑
r

(Nµ1···µr + Ñµ̄1···µ̄r) K SX T
µ̄1···µ̄r
N︸ ︷︷ ︸

UV pole

splitting into

K̄ Ā1,γ = −δZ1,γ︸ ︷︷ ︸
MS pole

+ δR1,γ︸ ︷︷ ︸
rational

• δR1,γ and δZ1,γ from same UV singularity of TN ⇒ δR1,γ local counterterm like δZ1,γ

• δR1,γ is NOT a finite renormalisation of fields and couplings in bare Lagrangian, e.g. there is a
rational term of 4-photon vertice.
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One-loop subdiagram with D-dim external loop momenta

q2

ᾱ2

q2

ᾱ1

q1+q2q1

One-loop diagram with 4-dim q2:

Dk(q̄1, q2) = (q̄1 + q2)2 = q̄2
1 + 2 q̄1 · q2 + q2

2︸ ︷︷ ︸
4-dim

One-loop subdiagram with D-dim q̄2 = q2 + q̃2:

Dk(q̄1, q̄2) = Dk(q̄1, q2) + (2 q̄1 · q̃2 + q̃2
2)︸ ︷︷ ︸

ε-dim

⇒ extra term of order q̃2
2/ε contributes to two loops

(see later) ⇒ rational structure changes
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Subdiagram with D-dim external momentum q̄2 and 4-dim numerator

Tadpole expansion

SX
1

(q̄1 + q2 + q̃2)2 = 1
q̄2

1 −M2 + −(q2 + q̃2)2 − 2 q̄1 · (q2 + q̃2)−M2

(q̄2
1 −M2)2 + . . .

Contribution to UV pole

q2

q2

q1

KAα1,γ(q2) = K
∑
r

Nα
µ1···µr(q2)

∫
dq̄1

q̄
µ̄1
1 · · · q̄

µ̄r
1 ∆(σ)(q̄1, q2 + q̃2)(
q̄2

1 −M2)N+σ

= − δZα1,γ(q2)︸ ︷︷ ︸
MS pole

− δZ̃
α
1,γ(q̃2)︸ ︷︷ ︸

extra pole
new rational part

• δZ̃α1,γ(q̃2) is non-vanishing only in quadratic divergent subdiagrams, and has the form

δZ̃
α
1,γ(q̃2) ∝

q̃2
2
ε

= O(1)
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Renormalised one-loop subdiagrams

Subtract poles and rational terms, we can identify amplitudes with D-dim and 4-dim numer-
ator

Āᾱ1,γ(q̄2)− K̄ Āᾱ1,γ(q̄2)︸ ︷︷ ︸
D-dim full subtraction

= Aα1,γ(q2)−KAα1,γ(q2)︸ ︷︷ ︸
4-dim full subtraction

+O(ε, q̃)

Recall

K̄ Āᾱ1,γ(q̄2) = −δZᾱ1,γ(q̄2) + δRα1,γ(q2) +O(ε)

KAα1,γ(q2) = −δZα1,γ(q2)− δZ̃α1,γ(q̃2)

⇒ Renormalised one-loop amplitude

Āᾱ1,γ(q̄2) + δZᾱ1,γ(q̄2)︸ ︷︷ ︸
D-dim renormalisation

= Aα1,γ(q2) + δZα1,γ(q2)︸ ︷︷ ︸
4-dim renormalisation
compute numerically

+ δZ̃
α
1,γ(q̃2) + δRα1,γ(q2)︸ ︷︷ ︸

rational parts

+O(ε, q̃)
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Renormalisation of irreducible two-loop diagrams

Renormalisation of D-dim amplitude of diagram Γ with R operation [Caswell and Kennedy, 82’]

R Ā2,Γ = Ā2,Γ +
∑
γi

δZ1,γi · Ā1,Γ/γi︸ ︷︷ ︸
subdivergences

+ δZ2,Γ︸ ︷︷ ︸
local two-loop
divergence

Example: QED vertex (Dn ∈ {D, 4} be the numerator dimension)

R Ā2,Γ =

 + δZ1,γ + δZ2,Γ


Dn = D
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Structure of two-loop UV rational terms (Ansatz)

Relation between renormalised amplitude in Dn = D and Dn = 4:

R Ā2,Γ = A2,Γ +
∑
γi

(δZ1,γi + δZ̃1,γi + δR1,γ) · A1,Γ/γi︸ ︷︷ ︸
subdivergences

+ (δZ2,Γ + δR2,Γ)︸ ︷︷ ︸
local two-loop
divergence

+O(ε)

Example: QED vertex

R Ā2,Γ =

 + (δZ1,γi
+ δZ̃1,γi

+ δR1,γ︸ ︷︷ ︸
extended rational insertion

) + (δZ2,Γ + δR2,Γ)


Dn = 4

+O(ε)
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Two-loop diagrams without global divergence (Proof)

No global divergence ⇒ at most one subdivergence to be subtracted

RĀ2,Γ =
(
Ā1,γi + δZ1,γi

)
︸ ︷︷ ︸
(a) UV pole subtracted

· Ā1,Γ/γi︸ ︷︷ ︸
(b) no divergence

⇐ e.g. + δZ1,γi

=
(
A1,γi + δZ1,γi + δZ̃1,γi + δR1,γ

)
· A1,Γ/γi︸ ︷︷ ︸

with 4-dim numerator

+O(ε)

= A2,Γ +
(
δZ1,γi + δZ̃1,γi + δR1,γ

)
· A1,Γ/γi +O(ε)

Hence we prove

two-loop δR2,Γ = 0 and δZ2,Γ = 0

⇒ only globally divergent two-loop diagrams contribute to δR2,Γ and δZ2,Γ

⇒ finite set of δR2,Γ and δZ2,Γ counterterms in renormalisable theories
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Two-loop diagrams with global divergence (Proof)

Isolates all divergences from three chains of loop momenta q̄i into tadpoles

q̄1 q̄2q̄3

Ā2,Γ =
(

S(1)
X1

+ F(1)
X1

)
︸ ︷︷ ︸
q̄1-denominators

(
S(2)
X2

+ F(2)
X2

)
︸ ︷︷ ︸
q̄2-denominators

(
S(3)
X3

+ F(3)
X3

)
︸ ︷︷ ︸
q̄3 = q̄1 + q̄2
-denominators

Ā2,Γ

= S(1)
X1

S(2)
X2

S(3)
X3
Ā2,Γ︸ ︷︷ ︸

tadpoles Ā2,Γtad

one master integral F (1, 1, 1)

+ non-global divergent terms

where S(i)
Xi

:= tadpole expansion of q̄i-dependent denominators that captures related sub- and global-
divergences.

• Only "simple" tadpoles A2,Γtad
contributes to two-loop δR2,Γ & δZ2,Γ

⇒ polynomial in external momenta and masses (upon subdivergence subtraction)
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Calculations of two-loop rational terms

For practical calculation in terms of tadpoles (recasting Ansatz)

δR2,Γ =

[ 3∏
i=1

S(i)
Xi
Ā2,Γ +

3∑
i=1

δZ1,γi · S
(i)
Xi
Ā1,Γ/γi

]
Dn=D

−

[ 3∏
i=1

S(i)
Xi
A2,Γ +

3∑
i=1

(
δZ1,γi + δZ̃1,γi + δR1,γi

)
·
(

S(i)
Xi
A1,Γ/γi

)]
Dn=4

Example: QED vertex

δR2,Γ =

 3∏
i=1

S(i)
Xi

+ S(1)
X1

δZ1,γ


Dn=D

−

 3∏
i=1

S(i)
Xi

+ S(1)
X1

(δZ1,γi
+ δZ̃1,γi

+ δR1,γ)


Dn=4
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QED two-loop rational terms in MS scheme (ξ = 0,m = 0)

Calculating in GEXCOM [Chetyrkin,Zoller] framework: QGRAF [Noguira] →Q2E+EXP [Seidesticker, Harlan-
der, Steinhauser] →FORM [Vermaseren] code →MATAD [Steinhauser]

δR2,e = i
α2

16π2

(
19
18

1
ε

+ 247
108

)
/p

µ ν δRµν
2,γ = i

α2

16π2

[
(pµpν − gµνp2)

(
2
3

1
ε
− 71

18

)
+ gµν

(
−11

12
p2
)]

µ δRµ
2,eeγ = ie

α2

16π2γ
µ

(
13
9

1
ε

+ 191
27

)
µ ν

ρ σ

δRµνρσ
2,4γ = i

α3

4π
(−3) (gµνgρσ + gµρgνσ + gµσgνρ)

• δR2,Γ are polynomial in p and independent of auxiliary tadpole massM ⇒ local counterterm
(Full results with Rξ gauge and electron mass dependence in upcoming paper)
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Summary

• Renormalised D-dim two-loop amplitude can be reconstructed by amplitude with 4-dim
numerator

R Ā2,Γ = A2,Γ +
3∑
i=1

(δZ1,γi + δZ̃1,γi + δR1,γ) · A1,Γ/γi + (δZ2,Γ + δR2,Γ) +O(ε) .

⇒ numerical implementation in automated tools becomes possible.

• We provide a generic method to compute δR2,Γ from one-scale tadpoles, and show that
δR2,Γ is local counterterm.

• Full set of QED rational terms at two loops.
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Backup
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A brief introduction to OpenLoops 2 [ArXiv:1907.13071]

OpenLoops is a fully automated numerical tool for tree and one-loop amplitudes computation.

• Download at https://openloops.hepforge.org

• Full NLO QCD and EW corrections available
More than 200 processes libraries available for all relevant SM processes (+HEFT)
Additional libraries provided upon user requests

• Fast CPU performance and excellent numerical stability
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Applications of OpenLoops 2

• Interfaces to many Monte Carlo programs
Sherpa [Höche, Krauss, Schönherr, Siegert et al.]
Munich/Matrix [Grazzini, Kallweit, Rathlev, Wiesemann]
NNLOJET [Currie, Chen, Gehrmann, Glover, Huss et al.]
Powheg [Nason, Oleari et al.], Herwig [Gieseke, Plätzer et al.]
Geneva [Alioli, Bauer, Tackmann et al.], Whizard [Kilian, Ohl, Reuter et al.]

• OpenLoops 2 applications (2019)
NNLO QCD + NLO EW Vector-boson pair production [Grazzini, Kallweit, Lindert, Pozzorini, Wiesemann]
NNLO QCD Three-photon production [Chawdhry, Czakon, Mitov, Poncelet]
NNLO QCD Spin correlations in tt̄ production [Behring, Czakon, Mitov, Papanastasiou, Poncelet]
NLO QCD tt̄bb̄+jet production [Buccioni, Kallweit, Pozzorini, Zoller]
and more NNLO QCD results to appear with Matrix and NNLOJET collaborations
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Why OpenLoops 2 is used at NNLO? ⇒ fast and accurate

OpenLoops 2 implements on-the-fly reduction [Buccioni, Pozzorini, Zoller, 18’] that unifies amplitude
constructions and reductions in a single recursion

n = 7

n1 2 3 4 5 6 7

independent
coefficientsrank

1

2

3

4

5

6

7

5

15

35

70

126

210

330
OpenLoops 1

OpenLoops 2

processes # diagrams t [s] per PSP
gg → tt̄gg ∼ 9× 103 0.60
gg → tt̄ggg ∼ 160× 103 21.15
uū→ tt̄gg ∼ 1.6× 103 0.07
uū→ tt̄ggg ∼ 25× 103 2.08

uū→ W+W−gg ∼ 1× 103 0.15
uū→ W+W−ggg ∼ 13× 103 3.66
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Why OpenLoops 2 is used at NNLO? ⇒ fast and accurate

Numerical instabilities arise form reduction methods for evaluation of coefficients of master inte-
grals, which can have large cancellations due to spurious singularities.

Source of instabilities are the inverse of small rank-2 & rank-3 Gram determinants in critical
kinematical regions (both hard and infrared regions)

Solutions: on-the-fly stability system

• Analytical: Any-order triangle diagram expansion (reduction + master integral expansion)

• Numerical: Hybrid precision framework (double + quadruple precision)
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OpenLoops 2 stability

2→ 3 process: Real-Virtual contribution (NNLO) with collinear gluon pair (ξcoll = θ2
ij)

840−4−8−12−16−20−24−28−32−36

accuracy A

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

ξ c
o
ll

intial-state collinear radiation in gg → tt̄g at O(α4
s)

OL1+CutTools dp

OL1+Collier dp

OL2 hp mode 2

OL2 qp
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One-loop subdiagram example: photon self-energy

Let Dn ∈ {D, 4} be the dimension of numerator, we have

Dn = D ⇒ K̄
∫

dq̄1
−Tr

[
γ̄ᾱ1/̄q1γ̄

ᾱ2(/̄q1 + /̄q2)
]

q̄2
1 (q̄1 + q̄2)2 = 1

ε

(
− 4

3
(
q̄2

2 g
ᾱ1ᾱ2 − q̄ᾱ1

2 q̄
ᾱ2
2
)

︸ ︷︷ ︸
−δZ1,γ(q̄2)

+ 2 ε
3
q̄2

2 g
ᾱ1ᾱ2︸ ︷︷ ︸

δR1,γ(q2) +O(ε)

)

and

Dn = 4 ⇒ K
∫

dq̄1
−Tr

[
γα1/q1γ

α2(/q1 + /q2)
]

q̄2
1 (q̄1 + q2 + q̃2)2 = 1

ε

(
− 4

3
(
q2

2 g
α1α2 − qα1

2 q
α2
2
)

︸ ︷︷ ︸
−δZ1,γ(q2)

− 2
3
q̃2

2 g
α1α2︸ ︷︷ ︸

−δZ̃1,γ(q̃2)

)

⇒ Renormalised photon self-energy insertion:
ᾱ1

ᾱ2

+

ᾱ1

ᾱ2

δZ1,γ(q̄2)


Dn=D

=


α1

α2

+

α1

α2

(
δZ1,γ(q2) + δZ̃1,γ(q̃2) + δR1,γ(q2)

)

Dn=4

+O(ε)
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